Dark matter in three-Higgs-doublet models with S_3 symmetry

Anton Kunčinas

Centro de Física Teórica de Partículas – CFTP and Dept de Física Instituto Superior Técnico – IST, Universidade de Lisboa, Portugal

In collaboration with: W. Khater, O. M. Øgreid, P. Osland, M. N. Rebelo Based on [2108.07026]

DISCRETE 2020-2021

November 30, 2021

However, it fails to describe ______ Possible solution: _____

However, it fails to describe <u>dark matter</u>. Possible solution: extend the scalar sector with interplay of symmetries .

Motivation: check S_3 -3HDM for dark matter candidates.

However, it fails to describe <u>dark matter</u>. Possible solution: extend the scalar sector with interplay of symmetries .

Motivation: check S_3 -3HDM for dark matter candidates.

Outline:

- Inert Doublet Model;
- General S₃-3HDM;
- Dark matter within S_3 -3HDM;

Bilinear $h_{ij} = h_i^{\dagger} h_j$ is a singlet under SU(2).

Bilinear $h_{ij} = h_i^{\dagger} h_j$ is a singlet under SU(2).

$$\begin{split} \mathcal{V}_{2\text{HDM}} &= m_{11}^2 h_{11} + m_{22}^2 h_{22} - \left(m_{12}^2 h_{12} + \text{h.c.} \right) \\ &+ \frac{1}{2} \lambda_1 h_{11}^2 + \frac{1}{2} \lambda_2 h_{22}^2 + \lambda_3 h_{11} h_{22} + \lambda_4 h_{12} h_{21} \\ &+ \left\{ \frac{1}{2} \lambda_5 h_{12}^2 + \lambda_6 h_{11} h_{12} + \lambda_7 h_{22} h_{12} + \text{h.c.} \right\} \end{split}$$

Bilinear $h_{ij} = h_i^{\dagger} h_j$ is a singlet under SU(2).

$$\begin{aligned} \mathcal{V}_{\text{IDM}} &= m_{11}^2 h_{11} + m_{22}^2 h_{22} - \left(m_{12}^2 h_{12} + \text{h.c.} \right) \\ &+ \frac{1}{2} \lambda_1 h_{11}^2 + \frac{1}{2} \lambda_2 h_{22}^2 + \lambda_3 h_{11} h_{22} + \lambda_4 h_{12} h_{21} \\ &+ \left\{ \frac{1}{2} \lambda_5 h_{12}^2 + \lambda_6 h_{11} h_{12} + \lambda_7 h_{22} h_{12} + \text{h.c.} \right\} \end{aligned}$$

$$\mathbb{Z}_2: \left\{ \begin{array}{ll} h_1 \to h_1, \\ h_2 \to -h_2, \end{array} \right. \quad \text{vacuum:} \left\{ \begin{array}{ll} \langle 0|h_1|0 \rangle \neq 0, \\ \langle 0|h_2|0 \rangle = 0. \end{array} \right.$$

Dark Matter in Inert Doublet Model and Three-Higgs-Doublet Models

IDM: [1612.00511], [1809.07712]; IDM2 (one inert doublet): [1911.06477]; (Two inert doublets) 3HDM: **[1407.7859]**, **[1507.08433]**, **[1712.09598]**; CP-3HDM: **[1608.01673]**; Dark Matter in Inert Doublet Model and Three-Higgs-Doublet Models

IDM: [1612.00511], [1809.07712]; IDM2 (one inert doublet): [1911.06477]; (Two inert doublets) 3HDM: **[1407.7859]**, **[1507.08433]**, **[1712.09598]**; CP-3HDM: **[1608.01673]**;

Multi-Higgs-Doublet Models

$$\mathcal{L}_{\text{NHDM}} = \overbrace{\sum_{i=1}^{N} (D^{\mu} h_i)^{\dagger} (D_{\mu} h_i)}^{\mathcal{L}_{\text{Kinetic}}} - \overbrace{\mathcal{V}(h_1, \dots, h_N)}^{\mathcal{V}_{\text{Scalar}}} - \mathcal{L}_{\text{Yukawa}}$$

$$\mathcal{L}_{\text{NHDM}} = \underbrace{\sum_{i=1}^{N} \left(D^{\mu} h_{i} \right)^{\dagger} \left(D_{\mu} h_{i} \right)}_{i=1} - \underbrace{\mathcal{V}_{\text{Scalar}}}_{V \text{ (}h_{1}, \dots, h_{N})} - \mathcal{L}_{\text{Yukawa}}.$$

 $\mathbb{R}\mathrm{e}\xspace$ parameters (dependent) of NHDM [1007.1424]:

$$N_{
m tot} = rac{1}{2}N^2\left(N^2+3
ight) \quad
ightarrow \left\{ egin{array}{ccc} N=1:&N_{
m tot}=2,\ N=2:&N_{
m tot}=14,\ N=3:&N_{
m tot}=54,\ \ldots \end{array}
ight.$$

S₃-Symmetric Three-Higgs-Doublet Models: Generalities

S₃-Symmetric Three-Higgs-Doublet Models: Generalities

Possible transformations:

S₃-Symmetric Three-Higgs-Doublet Models: Generalities

Possible transformations:

 S_3 irreducible representation: $\chi_1 \oplus \chi_{1'} \oplus \chi_2$.

Assume an S₃ structure $(h_5)_1 \oplus \overline{\begin{pmatrix} h_1 \\ h_2 \end{pmatrix}_2}$.

Assume an S3 structure
$$(h_5)_1 \oplus egin{pmatrix} h_1 \ h_2 \end{pmatrix}_2$$
 .

$$\begin{split} \mathcal{V}_{\rm 3HDM} &= \mu_1^2 [2 \otimes 2]_1 + \mu_0^2 [1 \otimes 1]_1 \\ &+ \lambda_1 \Big([2 \otimes 2]_1 \otimes [2 \otimes 2]_1 \Big) + \lambda_2 \Big([2 \otimes 2]_{1'} \otimes [2 \otimes 2]_{1'} \Big) \\ &+ \lambda_3 \Big([2 \otimes 2]_2 \otimes [2 \otimes 2]_2 \Big) + \Big\{ \lambda_4 \Big([2 \otimes 2]_2 \otimes [1 \otimes 2]_2 \Big) + \stackrel{\rm sym}{\longleftrightarrow} \Big\} \\ &+ \lambda_5 \Big([2 \otimes 2]_1 \otimes [1 \otimes 1]_1 \Big) + \lambda_6 \Big([1 \otimes 2]_2 \otimes [2 \otimes 1]_2 \Big) \\ &+ \Big\{ \lambda_7 \Big([1 \otimes 2]_2 \otimes [1 \otimes 2]_2 \Big) + \stackrel{\rm sym}{\longleftrightarrow} \Big\} + \lambda_8 \Big([1 \otimes 1]_1 \otimes [1 \otimes 1]_1 \Big). \end{split}$$

Assume an S₃ structure
$$(h_S)_1 \oplus \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}_2$$

$$\begin{split} \mathcal{V}_{3\text{HDM}} &= \mu_1^2 \left(h_{11} + h_{22} \right) + \mu_0^2 h_{55} \\ &+ \lambda_1 \left(h_{11} + h_{22} \right)^2 + \lambda_2 \left(h_{12} - h_{21} \right)^2 + \lambda_3 \left[\left(h_{11} - h_{22} \right)^2 + \left(h_{12} + h_{21} \right)^2 \right] \\ &+ \left\{ \lambda_4 \left[h_{51} \left(h_{12} + h_{21} \right) + h_{52} \left(h_{11} - h_{22} \right) \right] + \text{h.c.} \right\} + \lambda_5 \left[h_{55} \left(h_{11} + h_{22} \right) \right] \\ &+ \lambda_6 \left[h_{15} h_{51} + h_{25} h_{52} \right] + \left\{ \lambda_7 \left[h_{51}^2 + h_{52}^2 \right] + \text{h.c.} \right\} + \lambda_8 h_{55}^2. \end{split}$$

Assume an S₃ structure
$$(h_S)_1 \oplus \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}_2$$

$$\begin{split} \mathcal{V}_{3\text{HDM}} &= \mu_1^2 \left(h_{11} + h_{22} \right) + \mu_0^2 h_{55} \\ &+ \lambda_1 \left(h_{11} + h_{22} \right)^2 + \lambda_2 \left(h_{12} - h_{21} \right)^2 + \lambda_3 \left[\left(h_{11} - h_{22} \right)^2 + \left(h_{12} + h_{21} \right)^2 \right] \\ &+ \left\{ \lambda_4 \left[h_{51} \left(h_{12} + h_{21} \right) + h_{52} \left(h_{11} - h_{22} \right) \right] + \text{h.c.} \right\} + \lambda_5 \left[h_{55} \left(h_{11} + h_{22} \right) \right] \\ &+ \lambda_6 \left[h_{15} h_{51} + h_{25} h_{52} \right] + \left\{ \lambda_7 \left[h_{51}^2 + h_{52}^2 \right] + \text{h.c.} \right\} + \lambda_8 h_{55}^2. \end{split}$$

Symmetries reduce free parameters:

$$\mathsf{NHDM} \xrightarrow{\mathsf{3HDM}} (\mathsf{54}) \xrightarrow{\mathsf{S}_3} \mathsf{12} \xrightarrow{\mathbb{R}_{\mathrm{e}}} \mathsf{10}$$

Assume an S₃ structure
$$(h_S)_1 \oplus \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}_2$$

$$\begin{split} \mathcal{V}_{3\text{HDM}} &= \mu_1^2 \left(h_{11} + h_{22} \right) + \mu_0^2 h_{55} \\ &+ \lambda_1 \left(h_{11} + h_{22} \right)^2 + \lambda_2 \left(h_{12} - h_{21} \right)^2 + \lambda_3 \left[\left(h_{11} - h_{22} \right)^2 + \left(h_{12} + h_{21} \right)^2 \right] \\ &+ \left\{ \lambda_4 \left[h_{51} \left(h_{12} + h_{21} \right) + h_{52} \left(h_{11} - h_{22} \right) \right] + \text{h.c.} \right\} + \lambda_5 \left[h_{55} \left(h_{11} + h_{22} \right) \right] \\ &+ \lambda_6 \left[h_{15} h_{51} + h_{25} h_{52} \right] + \left\{ \lambda_7 \left[h_{51}^2 + h_{52}^2 \right] + \text{h.c.} \right\} + \lambda_8 h_{55}^2. \end{split}$$

Symmetries reduce free parameters:

NHDM
$$\xrightarrow{\text{3HDM}}$$
 (54) $\xrightarrow{\text{S}_3}$ 12 $\xrightarrow{\text{Re}}$ 10

 S_3 -3HDM models were classified in [1601.04654]:

vacuum:
$$\begin{cases} 11 \text{ real } (w_1, w_2, w_S), \\ 17 \text{ complex } (\hat{w}_1 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S). \end{cases}$$

Whenever $w_S \neq 0$ we can construct a trivial Yukawa sector, $\mathcal{L}_Y \sim 1_f \otimes 1_h$:

$$\mathcal{M}_u = \frac{1}{\sqrt{2}} \mathrm{diag}\left(y_1^u, \, y_2^u, \, y_3^u\right) w_S^*, \qquad \mathcal{M}_d = \dots$$

Whenever $w_S \neq 0$ we can construct a trivial Yukawa sector, $\mathcal{L}_Y \sim 1_f \otimes 1_h$:

$$\mathcal{M}_u = \frac{1}{\sqrt{2}} \operatorname{diag}\left(y_1^u, y_2^u, y_3^u\right) w_5^*, \qquad \mathcal{M}_d = \dots$$

Fermions can transform non-trivially under S_3 , $\mathcal{L}_Y \sim (2 \oplus 1)_f \otimes (2 \oplus 1)_h$:

$$\mathbf{2}: (Q_1 \ Q_2)^{\mathrm{T}}, (u_{1R} \ u_{2R})^{\mathrm{T}}, (d_{1R} \ d_{2R})^{\mathrm{T}} \text{ and } \mathbf{1}: Q_3, \ u_{3R}, \ d_{3R},$$

$$\mathcal{M}_{u} = \frac{1}{\sqrt{2}} \begin{pmatrix} y_{1}^{u} w_{5}^{*} + y_{2}^{u} w_{2}^{*} & y_{2}^{u} w_{1}^{*} & y_{4}^{u} w_{1}^{*} \\ y_{2}^{u} w_{1}^{*} & y_{1}^{u} w_{5}^{*} - y_{2}^{u} w_{2}^{*} & y_{4}^{u} w_{2}^{*} \\ y_{5}^{u} w_{1}^{*} & y_{5}^{u} w_{2}^{*} & y_{3}^{u} w_{5}^{*} \end{pmatrix}, \qquad \mathcal{M}_{d} = \dots$$

Massless state:

$$\begin{split} \mathcal{V}\left(Uh\right) &= \mathcal{V}\left(h\right),\\ \left<0\right|\left(Uh\right)\left|0\right> &= \left<0\right|h|0\right>. \end{split}$$

Massless state:

$$\begin{aligned} \mathcal{V}\left(Uh\right) &= \mathcal{V}\left(h\right),\\ \left<0\right|\left(Uh\right)\left|0\right> &= \left<0\right|h|0\right>. \end{aligned}$$

Results of [2001.01994]:

Constraints	Continuous symmetries	# of massless		
Constraints	continuous symmetries	states		
$[\lambda_4 = 0]$	O(2)	1		
$\cdots + [\lambda_7 = 0]$	$O(2) \otimes U(1)_{h_S}$	2		
$\cdots + [\lambda_2 + \lambda_3 = 0]$	SU(2)	3		
	$[O(2) \otimes U(1)_{h_1} \otimes U(1)_{h_2} \otimes U(1)_{h_5}]$	5		

Vacuum	vevs	λ_4	symmetry # massless states		fermions under S_3	
R-I-1	$(0, 0, w_S)$	\checkmark	$S_3, h_1 \rightarrow -h_1$	none	trivial	
R-I-2a	(w, 0, 0)	\checkmark	<i>S</i> ₂	none	non-trivial	
R-I-2b,2c	$(w, \pm \sqrt{3}w, 0)$	\checkmark	<i>S</i> ₂	none	non-trivial	
R-II-1a	$(0, w_2, w_S)$	\checkmark	$S_2, h_1 \rightarrow -h_1$	none	trivial	
R-11-2	(0, w, 0)	0	$h_1 \rightarrow -h_1, h_S \rightarrow -h_S$	1	non-trivial	
R-11-3	$(w_1, w_2, 0)$	0	$h_S \rightarrow -h_S$	1	non-trivial	
R-III-s	$(w_1, 0, w_S)$	0	$h_2 \rightarrow -h_2$	1	trivial	
C-I-a	$(\hat{w}_1,\pm i\hat{w}_1,0)$	\checkmark	cyclic \mathbb{Z}_3	none	non-trivial	
C-III-a	$(0, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S)$	\checkmark	$S_2, h_1 \rightarrow -h_1$	none	trivial	
C-III-b	$(\pm i\hat{w}_1, 0, \hat{w}_S)$	0	$h_2 \rightarrow -h_2$	1	trivial	
C-III-c	$(\hat{w}_1 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, 0)$	0	$h_S \rightarrow -h_S$	2	non-trivial	
C-IV-a	$(\hat{w}_1 e^{i\sigma_1}, 0, \hat{w}_S)$	0	$h_2 \rightarrow -h_2$	2	trivial	

Vacuum	vevs	λ_4	symmetry # massless states		fermions under S_3	
R-I-1	$(0, 0, w_S)$	\checkmark	$S_3, h_1 \rightarrow -h_1$	none	trivial	
R-I-2a	(w, 0, 0)	\checkmark	<i>S</i> ₂	none	non-trivial	
R-I-2b,2c	$(w, \pm \sqrt{3}w, 0)$	\checkmark	<i>S</i> ₂	none	non-trivial	
R-II-1a	$(0, w_2, w_S)$	\checkmark	$S_2, h_1 \rightarrow -h_1$	none	trivial	
R-II-2	(0, w, 0)	0	$h_1 \rightarrow -h_1, h_S \rightarrow -h_S$	1	non-trivial	
R-II-3	$(w_1, w_2, 0)$	0	$h_S \rightarrow -h_S$	1	non-trivial	
R-III-s	$(w_1, 0, w_S)$	0	$h_2 \rightarrow -h_2$	1	trivial	
C-I-a	$(\hat{w}_1,\pm i\hat{w}_1,0)$	\checkmark	cyclic \mathbb{Z}_3	none	non-trivial	
C-III-a	$(0, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S)$	\checkmark	$S_2, h_1 \rightarrow -h_1$	none	trivial	
C-III-b	$(\pm i\hat{w}_1, 0, \hat{w}_S)$	0	$h_2 \rightarrow -h_2$	1	trivial	
C-III-c	$(\hat{w}_1 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, 0)$	0	$h_S \rightarrow -h_S$	2	non-trivial	
C-IV-a	$(\hat{w}_1 e^{i\sigma_1}, 0, \hat{w}_S)$	0	$h_2 \rightarrow -h_2$	2	trivial	

Vacuum	vevs	λ_4	symmetry # massless states		fermions under S_3	
R-I-1	$(0, 0, w_S)$	\checkmark	$S_3, h_1 \rightarrow -h_1$	none	trivial	
R-I-2a	(w, 0, 0)	\checkmark	<i>S</i> ₂	none	non-trivial	
R-I-2b,2c	$(w, \pm \sqrt{3}w, 0)$	\checkmark	<i>S</i> ₂	none	non-trivial	
R-II-1a	$(0, w_2, w_S)$	\checkmark	$S_2, h_1 \rightarrow -h_1$	none	trivial	
R-II-2	(0, w, 0)	0	$h_1 \rightarrow -h_1, h_S \rightarrow -h_S$	1	non-trivial	
R-II-3	$(w_1, w_2, 0)$	0	$h_S \rightarrow -h_S$	1	non-trivial	
R-III-s	$(w_1, 0, w_S)$	0	$h_2 \rightarrow -h_2$	1	trivial	
C-I-a	$(\hat{w}_1,\pm i\hat{w}_1,0)$	\checkmark	cyclic \mathbb{Z}_3	none	non-trivial	
C-III-a	$(0, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S)$	\checkmark	$S_2, h_1 \rightarrow -h_1$	none	trivial	
C-III-b	$(\pm i\hat{w}_1, 0, \hat{w}_S)$	0	$h_2 \rightarrow -h_2$	1	trivial	
C-III-c	$(\hat{w}_1 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, 0)$	0	$h_S \rightarrow -h_S$	2	non-trivial	
C-IV-a	$(\hat{w}_1 e^{i\sigma_1}, 0, \hat{w}_S)$	0	$h_2 \rightarrow -h_2$	2	trivial	

Vacuum	vevs	λ_4	symmetry # massless states		fermions under S_3	
R-I-1	$(0, 0, w_S)$	\checkmark	$S_3, h_1 \rightarrow -h_1$	none	trivial	
R-I-2a	(w, 0, 0)	\checkmark	<i>S</i> ₂	none	non-trivial	
R-I-2b,2c	$(w, \pm \sqrt{3}w, 0)$	\checkmark	<i>S</i> ₂	none	non-trivial	
R-II-1a	$(0, w_2, w_S)$	\checkmark	$S_2, h_1 \rightarrow -h_1$	none	trivial	
R-II-2	(0, w, 0)	0	$h_1 \rightarrow -h_1, h_S \rightarrow -h_S$	1	non-trivial	
R-II-3	$(w_1, w_2, 0)$	0	$h_S \rightarrow -h_S$	1	non-trivial	
R-III-s	$(w_1, 0, w_S)$	0	$h_2 \rightarrow -h_2$	1	trivial	
C-I-a	$(\hat{w}_1,\pm i\hat{w}_1,0)$	\checkmark	cyclic \mathbb{Z}_3	none	non-trivial	
C-III-a	$(0, \hat{w}_2 e^{i\sigma_2}, \hat{w}_S)$	\checkmark	$S_2, h_1 \rightarrow -h_1$	none	trivial	
C-III-b	$(\pm i\hat{w}_1, 0, \hat{w}_S)$	0	$h_2 \rightarrow -h_2$	1	trivial	
C-III-c	$(\hat{w}_1 e^{i\sigma_1}, \hat{w}_2 e^{i\sigma_2}, 0)$	0	$h_S \rightarrow -h_S$	2	non-trivial	
C-IV-a	$(\hat{w}_1 e^{i\sigma_1}, 0, \hat{w}_S)$	0	$h_2 \rightarrow -h_2$	2	trivial	

Vacuum: $\{0, w_2, w_5\}$.

Vacuum: $\{0, w_2, w_5\}$.

The \mathbb{Z}_2 symmetry is preserved for: $h_1 \to -h_1$, $\{h_2, h_S\} \to \pm \{h_2, h_S\}$.

Vacuum: $\{0, w_2, w_5\}$.

The \mathbb{Z}_2 symmetry is preserved for: $h_1 \rightarrow -h_1$, $\{h_2, h_5\} \rightarrow \pm \{h_2, h_5\}$.

The inert doublet is associated with h_1 .

Vacuum: $\{0, w_2, w_5\}$.

The \mathbb{Z}_2 symmetry is preserved for: $h_1 \rightarrow -h_1$, $\{h_2, h_5\} \rightarrow \pm \{h_2, h_5\}$.

The inert doublet is associated with h_1 .

Trivial Yukawa sector $\mathcal{L}_Y \sim 1_f \otimes 1_h$.

Vacuum: $\{0, w_2, w_5\}$.

The \mathbb{Z}_2 symmetry is preserved for: $h_1 \to -h_1$, $\{h_2, h_S\} \to \pm \{h_2, h_S\}$. The inert doublet is associated with h_1 .

Trivial Yukawa sector $\mathcal{L}_Y \sim 1_f \otimes 1_h$.

Mass eigenstates:

$$\begin{split} h_1 &= \begin{pmatrix} h^+ \\ \frac{1}{\sqrt{2}} \left(\eta + i\chi \right) \end{pmatrix}, \\ h_2 &= \begin{pmatrix} \sin\beta \, G^+ - \cos\beta \, H^+ \\ \frac{1}{\sqrt{2}} \left(\sin\beta \, v + \cos\alpha \, h - \sin\alpha \, H + i \left(\sin\beta \, G^0 - \cos\beta \, A \right) \right) \end{pmatrix}, \\ h_5 &= \begin{pmatrix} \cos\beta \, G^+ + \sin\beta \, H^+ \\ \frac{1}{\sqrt{2}} \left(\cos\beta \, v + \sin\alpha \, h + \cos\alpha \, H + i \left(\cos\beta \, G^0 + \sin\beta \, A \right) \right) \end{pmatrix}. \end{split}$$

Vacuum: $\{0, w_2, w_5\}$.

The \mathbb{Z}_2 symmetry is preserved for: $h_1 \to -h_1$, $\{h_2, h_5\} \to \pm \{h_2, h_5\}$. The inert doublet is associated with h_1 .

Trivial Yukawa sector $\mathcal{L}_Y \sim 1_f \otimes 1_h$.

Mass eigenstates:

$$\begin{split} h_1 &= \begin{pmatrix} h^+ \\ \frac{1}{\sqrt{2}} \left(\eta + i\chi \right) \end{pmatrix}, \\ h_2 &= \begin{pmatrix} \sin\beta G^+ - \cos\beta H^+ \\ \frac{1}{\sqrt{2}} \left(\sin\beta v + \cos\alpha h - \sin\alpha H + i\left(\sin\beta G^0 - \cos\beta A \right) \right) \end{pmatrix}, \\ h_5 &= \begin{pmatrix} \cos\beta G^+ + \sin\beta H^+ \\ \frac{1}{\sqrt{2}} \left(\cos\beta v + \sin\alpha h + \cos\alpha H + i\left(\cos\beta G^0 + \sin\beta A \right) \right) \end{pmatrix}. \end{split}$$

Inert, physical states: $\{h^{\pm}, \eta, \chi\}$.

Vacuum: $\{0, w_2, w_5\}$.

The \mathbb{Z}_2 symmetry is preserved for: $h_1 \to -h_1$, $\{h_2, h_S\} \to \pm \{h_2, h_S\}$. The inert doublet is associated with h_1 .

Trivial Yukawa sector $\mathcal{L}_Y \sim 1_f \otimes 1_h$.

Mass eigenstates:

$$h_{1} = \begin{pmatrix} h^{+} \\ \frac{1}{\sqrt{2}} (\eta + i\chi) \end{pmatrix},$$

$$h_{2} = \begin{pmatrix} \sin\beta G^{+} - \cos\beta H^{+} \\ \frac{1}{\sqrt{2}} (\sin\beta v + \cos\alpha h - \sin\alpha H + i(\sin\beta G^{0} - \cos\beta A)) \end{pmatrix},$$

$$h_{5} = \begin{pmatrix} \cos\beta G^{+} + \sin\beta H^{+} \\ \frac{1}{\sqrt{2}} (\cos\beta v + \sin\alpha h + \cos\alpha H + i(\cos\beta G^{0} + \sin\beta A)) \end{pmatrix}.$$

Inert, physical states: $\{h^{\pm}, \eta, \chi\}$. Two possible DM candidates: $\{\eta, \chi\}$.

Vacuum: $\{0, w_2, w_5\}$.

The \mathbb{Z}_2 symmetry is preserved for: $h_1 \to -h_1$, $\{h_2, h_S\} \to \pm \{h_2, h_S\}$. The inert doublet is associated with h_1 .

Trivial Yukawa sector $\mathcal{L}_Y \sim 1_f \otimes 1_h$.

Mass eigenstates:

$$h_{1} = \begin{pmatrix} h^{+} \\ \frac{1}{\sqrt{2}} (\eta + i\chi) \end{pmatrix},$$

$$h_{2} = \begin{pmatrix} \sin\beta G^{+} - \cos\beta H^{+} \\ \frac{1}{\sqrt{2}} (\sin\beta v + \cos\alpha h - \sin\alpha H + i(\sin\beta G^{0} - \cos\beta A)) \end{pmatrix},$$

$$h_{5} = \begin{pmatrix} \cos\beta G^{+} + \sin\beta H^{+} \\ \frac{1}{\sqrt{2}} (\cos\beta v + \sin\alpha h + \cos\alpha H + i(\cos\beta G^{0} + \sin\beta A)) \end{pmatrix}.$$

Inert, physical states: { h^{\pm} , η , χ }. Two possible DM candidates: { η , χ }. Active, physical states: { H^{\pm} , h - H, A}.

R-II-1a: Model Analysis

The model is analysed using the following input (6 masses + 2 angles):

- Mass of the SM-like Higgs is fixed at $m_h = 125.25$ GeV;
- The Higgs basis rotation angle β ∈ [-π/2, π/2] and the *h*-*H* diagonalisation angle α ∈ [0, π];
- The charged scalar masses $m_{arphi^\pm} \in$ [0.07, 1] TeV;
- The inert sector masses m_{φi} ∈ [0, 1] TeV.
 Either η or χ could be a DM candidate, whichever is lighter;
- The active sector masses $\{m_H, m_A\} \in [m_h, 1 \text{ TeV}];$

R-II-1a: Model Analysis

The model is analysed using the following input (6 masses + 2 angles):

- Mass of the SM-like Higgs is fixed at $m_h = 125.25$ GeV;
- The Higgs basis rotation angle β ∈ [-π/2, π/2] and the *h*-*H* diagonalisation angle α ∈ [0, π];
- The charged scalar masses $m_{arphi^\pm} \in$ [0.07, 1] TeV;
- The inert sector masses m_{φi} ∈ [0, 1] TeV.
 Either η or χ could be a DM candidate, whichever is lighter;
- The active sector masses $\{m_H, m_A\} \in [m_h, 1 \text{ TeV}];$

Both theoretical and experimental constraints, at 3- σ , are evaluated:

- Cut 1: perturbativity, stability, unitarity checks, LEP constraints;
- Cut 2: SM-like gauge and Yukawa sector, electroweak precision observables and *B* physics;
- Cut 3: $h \rightarrow \{\text{invisible}, \gamma\gamma\}$ decays, $\Omega_{\text{CDM}}h^2$, direct searches;

R-II-1a: Relic Density

R-II-1a: Relic Density

All constraints satisfied:

- $m_{\eta} < m_{\chi}$: no overlap in **all** parameters;
- $m_\eta > m_\chi$: overlap in all parameters for $m_\chi \in [52.5, 89]$ GeV;

- Multi-Higgs-doublet models are phenomenology rich and can accommodate a dark matter candidate;
- Possible DM candidates were identified within S₃-3HDM;
- Analysed the R-II-1a model, and found a viable dark matter region [52.5, 89] GeV;

Work supported by the Fundação para a Ciência e a Tecnologia (FCT, Portugal) PhD fellowship with reference UI/BD/150735/2020 as well as through the FCT projects CERN/FIS-PAR/0002/2021, UIDB/00777/2020, UIDP/00777/2020, PTDC/FIS-PAR/29436/2017.

We can generate the following S_3 structures:

$$\begin{split} \mathbf{1} &: & [2 \otimes 2]_1, \ [1 \otimes 1]_1, \ [1' \otimes 1']_1; \\ \mathbf{1}' &: & [2 \otimes 2]_{1'}, \ [1 \otimes 1']_{1'}, \ [1' \otimes 1]_{1'}; \\ \mathbf{2} &: & [2 \otimes 2]_2, \ [1 \otimes 2]_2, \ [2 \otimes 1]_2, \ [1' \otimes 2]_2, \ [2 \otimes 1']_2; \end{split}$$

Products:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_2 \otimes \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}_2 = (x_1y_1 + x_2y_2)_1 + (x_1y_2 - x_2y_1)_{1'} + \begin{pmatrix} x_1y_2 + x_2y_1 \\ x_1y_1 - x_2y_2 \end{pmatrix}_2, \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_2 \otimes (y')_{1'} = \begin{pmatrix} -x_2y' \\ x_1y' \end{pmatrix}_2, (x')_{1'} \otimes (y')_{1'} = (x'y')_1.$$

$$\begin{split} \mathcal{V}_{3\mathrm{HDM}} &= \mu_1^2 [2 \otimes 2]_1 + \mu_0^2 [1 \otimes 1]_1 \\ &+ \lambda_1 \left([2 \otimes 2]_1 \otimes [2 \otimes 2]_1 \right) + \lambda_2 \left([2 \otimes 2]_{1'} \otimes [2 \otimes 2]_{1'} \right) + \lambda_3 \left([2 \otimes 2]_2 \otimes [2 \otimes 2]_2 \right) \\ &+ \lambda_4 \left\{ \left([2 \otimes 2]_2 \otimes [1 \otimes 2]_2 \right) + \xleftarrow{\mathrm{sym}} \right\} + \lambda_5 \left([2 \otimes 2]_1 \otimes [1 \otimes 1]_1 \right) + \lambda_6 \left([1 \otimes 2]_2 \otimes [2 \otimes 1]_2 \right) \\ &+ \lambda_7 \left\{ \left([1 \otimes 2]_2 \otimes [1 \otimes 2]_2 \right) + \xleftarrow{\mathrm{sym}} \right\} + \lambda_8 \left([1 \otimes 1]_1 \otimes [1 \otimes 1]_1 \right). \end{split}$$

R-II-1a masses:

$$\begin{split} m_{h^+}^2 &= -2\lambda_3 w_2^2 + \frac{5}{2}\lambda_4 w_2 w_5 - \frac{1}{2}(\lambda_6 + 2\lambda_7)w_5^2, \\ m_{H^+}^2 &= \frac{v^2}{2w_5} \left[\lambda_4 w_2 - (\lambda_6 + 2\lambda_7) w_5\right], \\ m_{\eta}^2 &= \frac{9}{2}\lambda_4 w_2 w_5, \\ m_{\chi}^2 &= -2(\lambda_2 + \lambda_3)w_2^2 + \frac{5}{2}\lambda_4 w_2 w_5 - 2\lambda_7 w_5^2, \\ m_{A}^2 &= \frac{v^2}{2w_5} \left(\lambda_4 w_2 - 4\lambda_7 w_5\right), \\ m_{h}^2 &= \frac{1}{4w_5^2} \left[4\left(\lambda_1 + \lambda_3\right)w_2^2 w_5^2 + \lambda_4 w_2 w_5\left(w_2^2 - 3w_5^2\right) + 4\lambda_8 w_5^4 - w_5 \Delta\right], \\ m_{H}^2 &= \frac{1}{4w_5^2} \left[4\left(\lambda_1 + \lambda_3\right)w_2^2 w_5^2 + \lambda_4 w_2 w_5\left(w_2^2 - 3w_5^2\right) + 4\lambda_8 w_5^4 + w_5 \Delta\right], \end{split}$$

where

$$\begin{split} \Delta^2 &= 16 \left(\lambda_1 + \lambda_3\right)^2 w_2^4 w_5^2 - 8 \left(\lambda_1 + \lambda_3\right) w_2^2 w_5 \left[\lambda_4 \left(w_2^3 + 3 w_2 w_5^2\right) + 4 \lambda_8 w_5^3\right] \\ &+ 16 \lambda_s^2 w_2^2 w_5^4 - 48 \lambda_4 \lambda_8 w_2^3 w_5^3 + \lambda_4^2 \left(w_2^6 + 42 w_2^4 w_5^2 + 9 w_2^2 w_5^4\right) \\ &+ 8 \lambda_4 \lambda_8 w_2 w_5^3 \left(w_2^2 + 3 w_5^2\right) + 16 \lambda_8^2 w_5^6. \end{split}$$

R-II-1a gauge couplings:

$$\begin{split} \mathcal{L}_{VVH} &= \left[\frac{g}{2\cos\theta_W}m_Z Z_\mu Z^\mu + gm_W W^+_\mu W^{\mu-}\right] \left[\sin(\alpha+\beta)h + \cos(\alpha+\beta)H\right], \\ \mathcal{L}_{VHH} &= -\frac{g}{2\cos\theta_W}Z^\mu \left[\eta\overset{\leftrightarrow}{\partial_\mu}\chi - \cos(\alpha+\beta)h\overset{\leftrightarrow}{\partial_\mu}A + \sin(\alpha+\beta)H\overset{\leftrightarrow}{\partial_\mu}A\right] \\ &- \frac{g}{2}\left\{iW^+_\mu \left[ih^-\overset{\leftrightarrow}{\partial^\mu}\chi + h^-\overset{\leftrightarrow}{\partial^\mu}\eta - \cos(\alpha+\beta)H^-\overset{\leftrightarrow}{\partial^\mu}h\right] + h.c.\right\} \\ &+ \sin(\alpha+\beta)H^-\overset{\leftrightarrow}{\partial^\mu}H + iH^-\overset{\leftrightarrow}{\partial^\mu}A\right] + h.c.\right\} \\ &+ \left[ieA^\mu + \frac{ig}{2}\frac{\cos(2\theta_W)}{\cos\theta_W}Z^\mu\right] \left(h^+\overset{\leftrightarrow}{\partial_\mu}h^- + H^+\overset{\leftrightarrow}{\partial_\mu}H^-\right), \\ \mathcal{L}_{VVHH} &= \left[\frac{g^2}{8\cos^2\theta_W}Z_\mu Z^\mu + \frac{g^2}{4}W^+_\mu W^{\mu-}\right] \left(\eta^2 + \chi^2 + h^2 + H^2 + A^2\right) \\ &+ \left\{\left[\frac{eg}{2}A^\mu W^+_\mu - \frac{g^2}{2}\frac{\sin^2\theta_W}{\cos\theta_W}Z^\mu W^+_\mu\right] \left[\eta h^- + i\chi h^- - \cos(\alpha+\beta)hH^- \right. \\ &+ \left. \left. + \sin(\alpha+\beta)HH^- + iAH^- \right] + h.c. \right\} \right. \\ &+ \left[e^2A_\mu A^\mu + eg\frac{\cos(2\theta_W)}{\cos\theta_W}A_\mu Z^\mu + \frac{g^2}{4}\frac{\cos^2(2\theta_W)}{\cos^2\theta_W}Z_\mu Z^\mu + \frac{g^2}{2}W^-_\mu W^{\mu+} \right] \\ &\times \left(h^- h^+ + H^- H^+\right). \end{split}$$

R-II-1a fermionic couplings:

$$g(h\bar{f}f) = -i\frac{m_f}{v}\frac{\sin\alpha}{\cos\beta}, \quad g(H\bar{f}f) = -i\frac{m_f}{v}\frac{\cos\alpha}{\cos\beta},$$
$$g(A\bar{u}u) = -\gamma_5\frac{m_u}{v}\tan\beta, \quad g(A\bar{d}d) = \gamma_5\frac{m_d}{v}\tan\beta,$$

and for the leptonic sector, the Dirac mass terms would lead to similar relations.

$$g\left(H^{+}\bar{u}_{i}d_{j}\right) = i\frac{\sqrt{2}}{v}\tan\beta\left[P_{L}m_{u} - P_{R}m_{d}\right]\left(V_{\mathrm{CKM}}\right)_{ij},$$

$$g\left(H^{-}\bar{d}_{i}u_{j}\right) = i\frac{\sqrt{2}}{v}\tan\beta\left[P_{R}m_{u} - P_{L}m_{d}\right]\left(V_{\mathrm{CKM}}^{\dagger}\right)_{ji},$$

$$g\left(H^{+}\bar{\nu}I\right) = -i\frac{\sqrt{2}m_{I}}{v}\tan\beta P_{R},$$

$$g\left(H^{-}\bar{l}\nu\right) = -i\frac{\sqrt{2}m_{I}}{v}\tan\beta P_{L}.$$

We adopt 3- σ bounds from **PDG [2021]**:

$$\begin{split} \kappa_{VV}^2 &\equiv |\sin(\alpha + \beta)|^2 \in \{1.19 \pm 3\,\sigma\}, \text{ which comes from } h_{\rm SM}W^+W^-, \\ \kappa_{ff}^2 &\equiv \left|\frac{\sin\alpha}{\cos\beta}\right|^2 \in \{1.04 \pm 3\,\sigma\}, \text{ which comes from } h_{\rm SM}\bar{b}b. \end{split}$$

We impose the same sign for these two couplings not to spoil the interference required for $h_{\rm SM} \to \gamma \gamma$.

We adopt the experimental value, Br $(\bar{B} \rightarrow X(s)\gamma) \times 10^4 = 3.32 \pm 0.15$ PDG [2021] and impose an (n = 3)- σ tolerance, together with an additional 10 per cent computational uncertainty,

Br
$$(\bar{B} \to X(s)\gamma) \times 10^4 = 3.32 \pm \sqrt{(3.32 \times 0.1)^2 + (0.15 n)^2}$$

The acceptable region, corresponding to the 3- σ bound, is [2.76; 3.88].

Scatter plots of additional contributions to the di-photon decay amplitudes, normalised to the SM value, expressed in per cent:

Two-gluon versus di-photon Higgs-like particle branching ratios, normalised to the SM value:

R-II-1a

Parameter	BP 1	BP 2	BP 3	BP 4	BP 5	BP6	BP7	BP8	BP9
DM (χ) mass [GeV]	52.6	56.1	59.6	63.02	65.7	70.3	75.0	82.2	88.6
$\eta \text{ mass [GeV]}$	62.7	203.8	270.4	169.38	150.5	157.7	202.8	127.8	210.7
h^+ mass [GeV]	115.4	167.4	273.6	188.6	214.1	170.5	232.0	151.8	243.0
H^+ mass [GeV]	192.6	369.5	367.4	246.6	265.5	405.8	319.8	410.6	311.9
H mass [GeV]	263.9	349.3	352.9	276.3	298.2	402.0	368.5	405.2	317.6
A mass [GeV]	179.2	208.0	190.7	173.9	205.2	255.3	251.3	330.0	247.0
β/π	0.162	-0.204	-0.201	-0.165	0.163	0.220	0.203	-0.218	0.183
α/π	0.252	0.763	0.765	0.752	0.254	0.225	0.239	0.769	0.238
$\sigma_{\rm SI} \; [10^{-11} \text{ pb}]$	0.029	1.456	4.928	0.176	5.326	1.341	2.711	8.553	4.491
$\eta \rightarrow \chi q \bar{q}$ [%]	63.27				54.38	54.35		53.95	
$\eta \rightarrow \chi b \bar{b} [\%]$	0.48				14.80	14.85		13.90	
$\eta \rightarrow \chi \nu \bar{\nu}$ [%]	24.62				20.48	20.46		20.72	
$\eta \rightarrow \chi l\bar{l}$ [%]	11.61				10.33	10.33		11.42	
$\eta \rightarrow \chi Z ~[\%]$		99.98	53.09	100			100		100
$\eta \rightarrow \chi A ~[\%]$			46.91						
$h^+ \rightarrow \chi W^+$ [%]		100	100	99.98	99.89	99.99	99.99		99.99
$h^+ \rightarrow \eta q \bar{q}$ [%]	20.18							0.30	
$h^+ \rightarrow \eta \nu \bar{l} [\%]$	9.88							0.16	
$h^+ \rightarrow \chi q \bar{q}$ [%]	46.94							66.82	
$h^+ \rightarrow \chi \nu \bar{l} ~[\%]$	22.99							32.71	
$H^+ \rightarrow t \bar{b} ~[\%]$	9.07	43.69	58.23	95.09	95.78	30.95	96.25	31.54	93.59
$H^+ \rightarrow AW^+$ [%]		20.56	35.74	0.29	0.06	8.66	0.05	0.05	0.05
$H^+ \rightarrow h W^+$ [%]		1.94	2.67	4.46	4.00	1.23	2.86	1.15	6.20
$H^+ \rightarrow h^+ \eta ~[\%]$	85.9					43.74		61.68	
$H^+ \rightarrow h^+ \chi ~[\%]$	5.0	33.74	3.26			15.36	0.68	5.53	
$H \rightarrow \chi \chi [\%]$	0.15	0.03	0.07	0.87	15.03		11.34	7.63	63.75
$H \rightarrow \eta \eta ~[\%]$	89.9					24.89		25.31	
$H \rightarrow hh$ [%]	3.07	2.64	9.40	34.59	33.53	1.33	13.43	0.88	14.72
$H \rightarrow AZ ~[\%]$	0.09	13.55	70.93	13.91	2.87	7.61	22.78		0.07
$H \rightarrow W^+W^-$ [%]	4.06	3.13	10.40	34.98	33.35	1.89	16.32	1.26	14.70
$H \rightarrow ZZ ~[\%]$	1.75	1.43	4.77	15.29	14.82	0.88	7.53	0.59	6.62
$H \rightarrow h^+ h^-$ [%]	0.8	78.59				52.94		56.33	
$H \rightarrow q\bar{q} ~[\%]$		0.62	4.40	0.32	0.34	10.43	28.52	8.00	0.12
$A \rightarrow \eta \chi ~[\%]$	99.97					99.32		99.01	
$A \rightarrow b\bar{b}$ [%]	0.02	79.78	84.15	84.63	75.28	0.07	8.84	0.02	4.76
$A \rightarrow q\bar{q} \ [\%]$		3.56	3.75	3.77	3.36		0.39		0.21
$A \rightarrow \tau^+ \tau^-$ [%]		9.85	10.19	10.00	9.24		1.13		0.61
$A \rightarrow hZ$ [%]		6.81	1.87	1.55	12.08	0.6	89.63	0.96	94.42

