Searching for New Physics in Rare K and B Decays without $|V_{cb}|$ and $|V_{ub}|$ uncertainties

Elena Venturini

02/12/2021

Based on arxiv:2109.11032 with Andrzej J. Buras

DISCRETE 2020-2021

$$|V_{cb}|$$
 and $|V_{ub}|$ tensions

$$|V_{cb}|_{inclusive} = (42.16 \pm 0.50) \cdot 10^{-3}$$

2107.00604 [Bordone, Capdevila, Gambino]

$$|V_{cb}|_{exclusive} = (39.09 \pm 0.68) \cdot 10^{-3}$$

1902.0819 [FLAG]

See also 1912.09335 [Bordone, Gubernari, van Dyk, Jung]

$$|V_{ub}|_{inclusive} = (4.10 \pm 0.28) \cdot 10^{-3}$$
 Belle 2021

$$|V_{ub}|_{exclusive} = (3.73 \pm 0.14) \cdot 10^{-3}$$

$$|V_{ub}|_{exclusive} = (3.77 \pm 0.15) \cdot 10^{-3}$$

Light-cone sum rules 2102.07233 [Leljak, Melic, van Dyk]

FLAG

• $|\mathbf{V_{cb}}|$ and $|\mathbf{V_{ub}}| \rightarrow ~7-10\,\%$ uncertainties

- Strong dependence of K and B decays on $|\,V^{}_{cb}\,|\,\text{and}\,\,|\,V^{}_{ub}\,|$

Large uncertainties on K and B decays

-
$$|\,V_{cb}\,|^2 \to 16\,\%$$
 , e.g. in $Br(B_{s,d} \to \mu\mu)$ and $\Delta M_{s,d}$

•
$$|\mathbf{V_{cb}}|^3 \rightarrow 24 \%$$
, e.g. in $Br(\mathbf{K^+} \rightarrow \pi^+ \nu \nu)$ and $|\epsilon_{\mathbf{K}}|$

-
$$|\,V_{cb}\,|^4 \to 32\,\%$$
 , e.g. in $Br(K_L \to \pi^0 \nu \nu)$ and $\,Br(K_S \to \mu \mu)$

Large uncertainties on K and B decays

•
$$|V_{cb}|^2 \rightarrow 16\,\%$$
 , e.g. in $Br(B_{s,d} \rightarrow \mu\mu)$ and $\Delta M_{s,d}$

-
$$|\,V_{cb}\,|^4 \to 32\,\%$$
 , e.g. in $Br(K_L \to \pi^0 \nu \nu)$ and $\,Br(K_S \to \mu \mu)$

BUT

These are observables with:

Large uncertainties on K and B decays

•
$$|V_{cb}|^2 \rightarrow 16\%$$
 , e.g. in $Br(B_{s,d} \rightarrow \mu\mu)$ and $\Delta M_{s,d}$

•
$$|V_{cb}|^4 \rightarrow 32~\%$$
, e.g. in $Br(K_L \rightarrow \pi^0 \nu \nu)$ and $Br(K_S \rightarrow \mu \mu)$

BUT

These are observables with:

1. Precise theoretical predictions (NNLO QCD corrections) \rightarrow Accuracy at $1-2\,\%$

Large uncertainties on K and B decays

•
$$|V_{cb}|^2 \rightarrow 16\,\%$$
 , e.g. in $Br(B_{s,d} \rightarrow \mu\mu)$ and $\Delta M_{s,d}$

•
$$|V_{cb}|^4 \rightarrow 32~\%$$
, e.g. in $Br(K_L \rightarrow \pi^0 \nu \nu)$ and $Br(K_S \rightarrow \mu \mu)$

BUT

These are observables with:

- 1. Precise theoretical predictions (NNLO QCD corrections) \rightarrow Accuracy at 1 - 2%
- 2. Precisely measured (Br($B_s \rightarrow \mu \mu$), $\Delta M_{s,d}$)

Large uncertainties on K and B decays

-
$$~~|\,V_{cb}\,|^2 \rightarrow 16\,\%$$
 , e.g. in $Br(B_{s,d} \rightarrow \mu\mu)$ and $\Delta M_{s,d}$

•
$$|V_{cb}|^4 \rightarrow 32~\%$$
, e.g. in $Br(K_L \rightarrow \pi^0 \nu \nu)$ and $Br(K_S \rightarrow \mu \mu)$

BUT

These are observables with:

- 1. Precise theoretical predictions (NNLO QCD corrections) \rightarrow Accuracy at 1-2%
- 2. Precisely measured (Br($B_s \rightarrow \mu \mu$), $\Delta M_{s,d}$)
- 3. Small difference between the experimental measurements and the SM predictions $\to~\sim30\,\%\,$ for $Br(B_s\to\mu\mu)$

High precision needed for NP study

$$\mathbf{R}_{\mathbf{s}(\mathbf{d})\mu} \equiv \frac{\mathbf{Br}(\mathbf{B}_{\mathbf{s}(\mathbf{d})} \to \mu^+ \mu^-)}{\Delta \mathbf{M}_{\mathbf{s}(\mathbf{d})}} = \mathbf{C} \frac{\tau_{\mathbf{B}_{\mathbf{s}(\mathbf{d})}}}{\hat{\mathbf{B}}_{\mathbf{s}(\mathbf{d})}} \mathbf{f}(\mathbf{x}_t)$$

Idea of: 0303060 [Buras] 2104.09521 [Bobeth, Buras]

 $4.291 \cdot 10^{-10}$

Computing Ratios (in the SM) to obtain much clearer observables

$$\mathbf{R}_{\mathbf{s}(\mathbf{d})\mu} \equiv \frac{\mathbf{Br}(\mathbf{B}_{\mathbf{s}(\mathbf{d})} \to \mu^+ \mu^-)}{\Delta \mathbf{M}_{\mathbf{s}(\mathbf{d})}} = \mathbf{C} \frac{\tau_{\mathbf{B}_{\mathbf{s}(\mathbf{d})}}}{\oint} \mathbf{f}(\mathbf{x}_t)$$

Idea of: 0303060 [Buras] 2104.09521 [Bobeth, Buras]

 $4.291 \cdot 10^{-10}$

Computing Ratios (in the SM) to obtain much clearer observables

Cancellation of the full CKM dependence

• Cancellation also of the hadronic form factors $F_{B_{s(d)}}^2$

Precise determination of
$$\hat{B}_{s(d)}$$
 (LQCD) and of $f(x_t) = \frac{Y_0(x_t)^2}{S_0(x_t)}~$ (NLO QCD)

$$\mathbf{R}_{\mathbf{s}(\mathbf{d})\mu} \equiv \frac{\mathbf{Br}(\mathbf{B}_{\mathbf{s}(\mathbf{d})} \to \mu^+ \mu^-)}{\Delta \mathbf{M}_{\mathbf{s}(\mathbf{d})}} = \mathbf{C} \frac{\tau_{\mathbf{B}_{\mathbf{s}(\mathbf{d})}}}{\hat{\mathbf{B}}_{\mathbf{s}(\mathbf{d})}} \mathbf{f}(\mathbf{x}_t)$$

Idea of: 0303060 [Buras] 2104.09521 [Bobeth, Buras]

 $4.291 \cdot 10^{-10}$

Computing Ratios (in the SM) to obtain much clearer observables

$$[\mathbf{R}_{s\mu}]_{SM} = (2.04^{+0.08}_{-0.06}) \cdot 10^{-10} \text{ps} \qquad \text{vs} \qquad [\mathbf{R}_{s\mu}]_{exp} = (1.61^{+0.19}_{-0.17}) \cdot 10^{-10} \text{ps}$$

2.1σ tension with SM WITHOUT CKM uncertainties

$$\mathbf{R}_{\mathbf{s}(\mathbf{d})\mu} \equiv \frac{\mathbf{Br}(\mathbf{B}_{\mathbf{s}(\mathbf{d})} \to \mu^+ \mu^-)}{\Delta \mathbf{M}_{\mathbf{s}(\mathbf{d})}} = \mathbf{C} \frac{\tau_{\mathbf{B}_{\mathbf{s}(\mathbf{d})}}}{\hat{\mathbf{B}}_{\mathbf{s}(\mathbf{d})}} \mathbf{f}(\mathbf{x}_t)$$

Idea of: 0303060 [Buras] 2104.09521 [Bobeth, Buras]

 $4.291 \cdot 10^{-10}$

Computing Ratios (in the SM) to obtain much clearer observables

Generalization of the strategy \rightarrow other ratios of (functions of) observables to eliminate the $|V_{cb}|$ dependence

They will in general depend on other CKM parameters

CKM parametrization

CKM parametrization

• $\lambda = |\mathbf{V}_{us}|$: in general a weak dependence on it

•
$$\beta$$
 : determined from $S_{\psi K_S} \rightarrow (22.2 \pm 0.7)^\circ$

• γ : determined by LHCb through tree-level strategies $\rightarrow (65.4^{+3.8}_{-4.2})^{\circ}$

CKM parametrization

Dependence on $|V_{ub}|$, $|V_{ts}|$ and $|V_{td}|$ traded for the ones on λ , β , γ

1. Expression of the observables as functions of λ , $|V_{cb}|$, β , γ

- **1.** Expression of the observables as functions of λ , $|\mathbf{V_{cb}}|$, β , γ
- 2. Exact $|V_{cb}|$ independent correlations, trading the $|V_{cb}|$ dependence of one observable for the dependence on a second observable

- 1. Expression of the observables as functions of λ , $|V_{cb}|$, β , γ
- 2. Exact $|V_{cb}|$ independent correlations, trading the $|V_{cb}|$ dependence of one observable for the dependence on a second observable
- 3. If the dependence on the CKM parameters is not a power-law function \rightarrow Derivation of approximated power-law semi-numerical expressions with $\leq 2\%$ accuracy [Definition of *critical exponents*]

- 1. Expression of the observables as functions of λ , $|V_{cb}|$, β , γ
- 2. Exact $|V_{cb}|$ independent correlations, trading the $|V_{cb}|$ dependence of one observable for the dependence on a second observable
- 3. If the dependence on the CKM parameters is not a power-law function \rightarrow Derivation of approximated power-law semi-numerical expressions with $\leq 2\%$ accuracy [Definition of *critical exponents*]
- 4. $|V_{cb}|$ independent ratios \rightarrow Possible residual dependence on β and γ [Possible strategies to determine β and γ]

$Br(B_{s,d} \rightarrow \mu\mu)$

Largest source of uncertainty: $|V_{cb}|$ Negligible β dependence

$Br(B_{s,d} \rightarrow \mu\mu)$

Tension SM-exp depends on $|V_{cb}|$, while in $R_{s\mu}$ it is $|V_{cb}|$ independent: $|V_{cb}|_{inclusive} \rightarrow 2\sigma$ anomaly, $|V_{cb}|_{FLAG}$ in agreement with SM

 $Br(B_{s,d} \rightarrow \mu\mu)$

$$\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)_{\rm SM} = (3.39 \pm 0.06) \times 10^{-9} \left(\frac{F_{B_s}}{227.7 \,{\rm MeV}}\right)^2 \left|\frac{V_{tb}^* V_{ts}}{0.0402}\right|^2 \sim |\mathbf{V_{cb}}|^2$$
$$\mathbf{\mathcal{B}}(B_d \to \mu^+ \mu^-)_{\rm SM} = (0.973 \pm 0.02) \times 10^{-10} \left(\frac{F_{B_d}}{190.5 \,{\rm MeV}}\right)^2 \left|\frac{V_{tb}^* V_{td}}{0.00848}\right|^2 \sim |\mathbf{V_{cb}}|^2 (\sin\gamma)^2$$

$$Br(B_{s,d} \rightarrow \mu\mu)$$

1.
$$\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)_{\rm SM} = (3.39 \pm 0.06) \times 10^{-9} \left(\frac{F_{B_s}}{227.7 \,{\rm MeV}}\right)^2 \left|\frac{V_{tb}^* V_{ts}}{0.0402}\right|^2 \sim |\mathbf{V_{cb}}|^2$$

 $\mathcal{B}(B_d \to \mu^+ \mu^-)_{\rm SM} = (0.973 \pm 0.02) \times 10^{-10} \left(\frac{F_{B_d}}{190.5 \,{\rm MeV}}\right)^2 \left|\frac{V_{tb}^* V_{td}}{0.00848}\right|^2 \sim |\mathbf{V_{cb}}|^2 (\sin\gamma)^2$

2. Exact $|V_{cb}|$ independent correlations of $Br(B_s \to \mu\mu)$ with $Br(K^+ \to \pi^+ \nu\nu)$

$$|V_{cb}|^2 = \frac{\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)}{2.09 \times 10^{-6} \overline{R}_s} \left(\frac{227.7 \text{MeV}}{F_{B_s}} \frac{1}{G(\beta, \gamma)}\right)^2 \qquad |\mathbf{V_{cb}}| \text{ from } \mathbf{Br}(\mathbf{B_s} \to \mu\mu)$$

$$\mathcal{B}(K^{+} \to \pi^{+} \nu \bar{\nu}) = (1 + \Delta_{\rm EM}) \frac{\kappa_{+}}{\lambda^{8}} |V_{cb}|^{4} X(x_{t})^{2} \left[\frac{R_{t}^{2} \sin^{2} \beta}{(1 - \lambda^{2}/2)^{2}} + \left(1 - \frac{\lambda^{2}}{2}\right)^{2} \left(R_{t} \cos \beta + \frac{\lambda^{4} P_{c}(X)}{|V_{cb}|^{2} X(x_{t})}\right)^{2} \right] \qquad \kappa_{+} = (5.173 \pm 0.025) \times 10^{-11} \left[\frac{\lambda}{0.225} \right]^{8}$$

$$Br(B_{s,d} \rightarrow \mu\mu)$$

1.
$$\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)_{\rm SM} = (3.39 \pm 0.06) \times 10^{-9} \left(\frac{F_{B_s}}{227.7 \,{\rm MeV}}\right)^2 \left|\frac{V_{tb}^* V_{ts}}{0.0402}\right|^2 \sim |\mathbf{V_{cb}}|^2$$

 $\mathcal{B}(B_d \to \mu^+ \mu^-)_{\rm SM} = (0.973 \pm 0.02) \times 10^{-10} \left(\frac{F_{B_d}}{190.5 \,{\rm MeV}}\right)^2 \left|\frac{V_{tb}^* V_{td}}{0.00848}\right|^2 \sim |\mathbf{V_{cb}}|^2 (\sin \gamma)^2$

2. Exact $|V_{cb}|$ independent correlations of $Br(B_s \to \mu\mu)$ with $Br(K^+ \to \pi^+ \nu\nu)$

$$|V_{cb}|^2 = \frac{\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)}{2.09 \times 10^{-6} \bar{R}_s} \left(\frac{227.7 \text{MeV}}{F_{B_s}} \frac{1}{G(\beta, \gamma)}\right)^2 \qquad |\mathbf{V_{cb}}| \text{ from } \mathbf{Br}(\mathbf{B_s} \to \mu\mu)$$

$$B_{1} = \frac{X(x_{t})^{2}}{\lambda^{8}} B_{3}^{2} \left(\frac{227.7 \text{MeV}}{F_{B_{s}}} \frac{1}{G(\beta,\gamma)}\right)^{4} \qquad B_{1} = \frac{\mathcal{B}(K^{+} \to \pi^{+}\nu\bar{\nu})}{\kappa_{+}(1+\Delta_{\text{EM}})}$$
$$\times \left[\sigma \sin^{2}\gamma \sin^{2}\beta + \frac{1}{\sigma} \left(\sin\gamma \cos\beta + \frac{\lambda^{4}P_{c}(X)}{B_{3}X(x_{t})} \left(\frac{F_{B_{s}}}{227.7 \text{MeV}}G(\beta,\gamma)\right)^{2}\right)^{2}\right] \qquad B_{3} = \frac{\overline{\mathcal{B}}(B_{s} \to \mu^{+}\mu^{-})}{2.09 \times 10^{-6}\bar{R}_{s}}$$

$$Br(B_{s,d} \rightarrow \mu\mu)$$

3. Approximated power-law expression for $Br(K^+ \rightarrow \pi^+ \nu \nu)$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.92 \pm 0.28) \times 10^{-11} \left[\frac{|V_{cb}|}{41.0 \times 10^{-3}} \right]^{2.8} \left[\frac{\sin \gamma}{\sin 67^\circ} \right]^{1.39},$$

Critical exponents

$$\mathbf{Br}(\mathbf{K}^+ \to \pi^+ \nu \nu) \propto |V_{cb}|^{2.8} \quad \mathbf{\&} \quad \mathbf{Br}(\mathbf{B}_{\mathbf{s},\mathbf{d}} \to \mu \mu) \propto |V_{cb}|^2$$

 $Br(B_{s,d} \rightarrow \mu\mu)$

3. Approximated power-law expression for $Br(K^+ \rightarrow \pi^+ \nu \nu)$

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (7.92 \pm 0.28) \times 10^{-11} \left[\frac{|V_{cb}|}{41.0 \times 10^{-3}} \right]^{2.8} \left[\frac{\sin \gamma}{\sin 67^\circ} \right]^{1.39},$$

Critical exponents

$$\mathbf{Br}(\mathbf{K}^{+} \to \pi^{+} \nu \nu) \propto |V_{cb}|^{2.8} \quad \mathbf{\&} \quad \mathbf{Br}(\mathbf{B}_{\mathbf{s},\mathbf{d}} \to \mu \mu) \propto |V_{cb}|^{2}$$
$$\boxed{R_{1}(\beta,\gamma) = \frac{\mathcal{B}(K^{+} \to \pi^{+} \nu \bar{\nu})}{\left[\overline{\mathcal{B}}(B_{s} \to \mu^{+} \mu^{-})\right]^{1.4}}, \qquad R_{2}(\beta,\gamma) = \frac{\mathcal{B}(K^{+} \to \pi^{+} \nu \bar{\nu})}{\left[\mathcal{B}(B_{d} \to \mu^{+} \mu^{-})\right]^{1.4}}.$$

Approximately $|\,V_{cb}^{}\,|$ independent !!!

$$\mathbf{R_1} \propto [\sin \gamma]^{1.39} [F_{B_s}]^{-2.8}$$

 $\mathbf{R_2} \propto [\sin \gamma]^{-1.41} [F_{B_d}]^{-2.8}$

4.

BUT not γ independent !

$$\mathbf{4.} \qquad \mathbf{R}_1(\beta,\gamma) = \frac{\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})}{\left[\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)\right]^{1.4}}, \qquad R_2(\beta,\gamma) = \frac{\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})}{\left[\mathcal{B}(B_d \to \mu^+ \mu^-)\right]^{1.4}}.$$

$$Br(B_{s,d} \rightarrow \mu\mu)$$

2. Exact power-law expression for $Br(K_L \rightarrow \pi^0 \nu \nu)$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (2.61 \pm 0.04) \times 10^{-11} \left[\frac{\sin \beta}{\sin(22.2^\circ)} \right]^2 \left[\frac{\sin \gamma}{\sin(67^\circ)} \right]^2 \left[\frac{|V_{cb}|}{41.0 \times 10^{-3}} \right]^4$$

$$\mathbf{Br}(\mathbf{K_L} \to \pi^0 \nu \nu) \propto |V_{cb}|^4 \quad \& \quad \mathbf{Br}(\mathbf{B_{s,d}} \to \mu \mu) \propto |V_{cb}|^2$$

$$Br(B_{s,d} \rightarrow \mu\mu)$$

2. Exact power-law expression for $Br(K_L \rightarrow \pi^0 \nu \nu)$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (2.61 \pm 0.04) \times 10^{-11} \left[\frac{\sin \beta}{\sin(22.2^\circ)} \right]^2 \left[\frac{\sin \gamma}{\sin(67^\circ)} \right]^2 \left[\frac{|V_{cb}|}{41.0 \times 10^{-3}} \right]^4$$

$$\mathbf{Br}(\mathbf{K}_{\mathbf{L}} \to \pi^{0} \nu \nu) \propto |V_{cb}|^{4} \quad \& \quad \mathbf{Br}(\mathbf{B}_{\mathbf{s},\mathbf{d}} \to \mu \mu) \propto |V_{cb}|^{2}$$

$$R_3(\beta,\gamma) = \frac{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})}{\left[\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)\right]^2}, \qquad R_4(\beta,\gamma) = \frac{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})}{\left[\mathcal{B}(B_d \to \mu^+ \mu^-)\right]^2}.$$

Exactly $|V_{cb}|$ independent !!!

 $\mathbf{R_3} \propto [\sin\beta]^2 [\sin\gamma]^2 [F_{B_s}]^{-4}$ $\mathbf{R_4} \propto [\sin\beta]^2 [\sin\gamma]^{-2} [F_{B_d}]^{-4}$

4.

 $\mathbf{S}_{\mathbf{s},\mathbf{d}} \rightarrow \mu \mu$ B

$$R_3(\beta,\gamma) = \frac{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})}{\left[\overline{\mathcal{B}}(B_s \to \mu^+ \mu^-)\right]^2}, \qquad R_4(\beta,\gamma) = \frac{\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})}{\left[\mathcal{B}(B_d \to \mu^+ \mu^-)\right]^2}.$$

4.

Exactly $|V_{cb}|$ independent !!!

Dominant uncertainties due to γ and β

Critical exponents for other observables

		Observable	r_1	r_2	r_3
		$K^+ \to \pi^+ \nu \bar{\nu},$	2.8	1.39	0.0
		$K_L \to \pi^0 \nu \bar{\nu},$	4.0	2.0	2.0
		$K_S \to \mu^+ \mu^-,$	4.0	2.0	2.0
Observable \propto		$ \varepsilon_K ,$	3.4	1.67	0.87
$\propto \mathbf{V_{cb}} ^{\mathbf{r}_1} [\sin \gamma]^{\mathbf{r}_2} [\sin \beta]^{\mathbf{r}_3}$	\star	$B_s \to \mu^+ \mu^-$	4.0	0.0	0.0
		$B_d \to \mu^+ \mu^-$	2.0	2.0	0.0
	\star	$B^+ \to K^+ \nu \bar{\nu}$	2.0	0.0	0.0
	\star	$B^0 \to K^{0*} \nu \bar{\nu}$	2.0	0.0	0.0
		ΔM_d	2.0	2.0	0.0
	\star	ΔM_s	2.0	0.0	0.0

16 |V_{cb}| independent ratios

$$\mathbf{R}_{5} \equiv \frac{\mathbf{Br}(\mathbf{K}^{+} \to \pi^{+} \nu \nu)}{[\mathbf{Br}(\mathbf{B}^{+} \to \mathbf{K}^{+} \nu \nu)]^{1.4}} \propto [\sin \gamma]^{1.39} \qquad \mathbf{R}_{6} \equiv \frac{\mathbf{Br}(\mathbf{K}^{+} \to \pi^{+} \nu \nu)}{[\mathbf{Br}(\mathbf{B}^{0} \to \mathbf{K}^{0*} \nu \nu)]^{1.4}} \propto [\sin \gamma]^{1.39}$$

$$\textbf{CKM independent} \quad \textbf{R}_7 \equiv \frac{Br(B^+ \to K^+ \nu \nu)}{Br(B_s \to \mu \mu)} \propto [\textbf{F}_{B_s}]^{-2} \qquad \textbf{R}_8 \equiv \frac{Br(B^0 \to K^{0*} \nu \nu)}{Br(B_s \to \mu \mu)} \propto [\textbf{F}_{B_s}]^{-2}$$

 1.8σ tension SM-exp

$$\mathbf{R}_{9} \equiv \frac{|\epsilon_{\mathbf{K}}|}{(\Delta \mathbf{M}_{d})^{1.7}} \propto [\sin\gamma]^{-1.73} [\sin\beta]^{0.87} \qquad \mathbf{R}_{10} \equiv \frac{|\epsilon_{\mathbf{K}}|}{(\Delta \mathbf{M}_{s})^{1.7}} \propto [\sin\gamma]^{1.67} [\sin\beta]^{0.87}$$

$$\mathbf{R}_{11} \equiv \frac{\mathbf{Br}(\mathbf{K}^{+} \to \pi^{+}\nu\nu)}{|\epsilon_{\mathbf{K}}|^{0.82}} \propto [\sin\gamma]^{0.015} [\sin\beta]^{-0.71} \qquad \mathbf{R}_{12} \equiv \frac{\mathbf{Br}(\mathbf{K}_{\mathbf{L}} \to \pi^{0}\nu\nu)}{|\epsilon_{\mathbf{K}}|^{1.18}} \propto [\sin\gamma]^{0.03} [\sin\beta]^{0.98}$$

$$\mathbf{Almost depending}_{only on \beta} \qquad \mathbf{R}_{s\mu} \equiv \frac{\mathbf{Br}(\mathbf{B}_{s} \to \mu\mu)}{\Delta \mathbf{M}_{s}} \propto \mathbf{const} \qquad \mathbf{R}_{d\mu} \equiv \frac{\mathbf{Br}(\mathbf{B}_{d} \to \mu\mu)}{\Delta \mathbf{M}_{d}} \propto \mathbf{const} \qquad \mathbf{CKM}_{independent}$$

$$\mathbf{accurately determined}_{from S_{\psi K_{S}}} \leftarrow \mathbf{R}_{0} \equiv \frac{\mathbf{Br}(\mathbf{K}^{+} \to \pi^{+}\nu\nu)}{\mathbf{Br}(\mathbf{K}_{\mathbf{L}} \to \pi^{0}\nu\nu)^{0.7}} \propto [\sin\beta]^{-1.4} \qquad \mathbf{R}_{SL} \equiv \frac{\mathbf{Br}(\mathbf{K}_{S} \to \mu\mu)_{SD}}{\mathbf{Br}(\mathbf{K}_{\mathbf{L}} \to \pi^{0}\nu\nu)} \propto \mathbf{const}$$

Basic Strategy for |V_{cb}| independent branching ratios

Determination of CKM parameters through precisely measured observables: $|\epsilon_K|$, ΔM_s , ΔM_d , $S_{\psi K_s}$

CKM dependence in K and B branching ratios traded for dependence on $\|e_K\|$, ΔM_s , ΔM_d , $S_{\psi K_s}$

Basic Strategy for |V_{cb}| independent branching ratios

Determination of CKM parameters through precisely measured observables: $|\, {\cal C}_K \,|\,, \Delta M_s, \Delta M_d, S_{\psi K_s}$

CKM dependence in K and B branching ratios traded for dependence on $|e_K|$, ΔM_s , ΔM_d , S_{wKs}

Basic Strategy for |V_{cb}| independent branching ratios

Determination of CKM parameters through precisely measured observables: $|\ell_K|, \Delta M_s, \Delta M_d, S_{\psi K_s}$

CKM dependence in K and B branching ratios traded for dependence on $\|e_K\|$, ΔM_s , ΔM_d , $S_{\psi K_s}$

Basic Strategy for |V_{cb}| independent branching ratios

Determination of CKM parameters through precisely measured observables: $|\, \epsilon_K^{}|\,, \Delta M_s^{}, \Delta M_d^{}, S_{\psi K_S}^{}$

CKM dependence in K and B branching ratios traded for dependence on $|\epsilon_K|$, ΔM_s , ΔM_d , $S_{\psi K_s}$

 $(\left|\mathbf{V_{cb}}\right|, \gamma, \beta)$, from:

- $|\epsilon_{\rm K}|$, $\Delta {\rm M}_{\rm s}$, $\Delta {\rm M}_{\rm d}$
- $|\epsilon_{\rm K}|$, $\Delta {\rm M}_{\rm s}$, ${\rm S}_{\psi {\rm K}_{\rm S}}$
- $|\epsilon_{\rm K}|$, $\Delta M_{\rm d}$, $S_{\psi {\rm K}_{\rm S}}$

Tensions in the SM

Basic Strategy for |V_{cb}| independent branching ratios

Determination of CKM parameters through precisely measured observables: $|\ell_K|, \Delta M_s, \Delta M_d, S_{\psi K_s}$

CKM dependence in K and B branching ratios traded for dependence on
$$|\epsilon_{\rm K}|$$
, $\Delta M_{\rm s}$, $\Delta M_{\rm d}$, $S_{wK_{\rm c}}$

$$\beta = 22.2(7)^{\circ} \text{ from } S_{\psi K_S}$$

$$\gamma = 69.8(26)^{\circ} \text{ from } |\epsilon_K|, \Delta M_S \rightarrow$$

$$|V_{ub}| = 3.65(12) \cdot 10^{-3}$$
Consistent with FLAG:
$$|V_{ub}| = 3.73(11) \cdot 10^{-3}$$

 $\Delta \Delta \Delta (\pi) \wedge d$

Basic Strategy for |V_{cb}| independent branching ratios

Determination of $|V_{cb}|$ and β through precisely measured observables: $|\epsilon_K|$ ($|V_{cb}|$ for K decays), $\Delta M_{s,d}$ ($|V_{cb}|$ for B decays), $S_{\psi K_S}$ (β) [In the SM]

 $|V_{cb}|$ dependence in K and B branching ratios traded for dependence on $|e_{
m K}|$, $\Delta M_{
m s}$, $\Delta M_{
m d}$

Decay	Branching Ratio	Decay	Branching Ratio
$K^+ \to \pi^+ \nu \bar{\nu}$	$(8.60 \pm 0.42) \times 10^{-11}$	$B_s \to \mu^+ \mu^-$	$(3.62^{+0.15}_{-0.10}) \times 10^{-9}$
$K_L \to \pi^0 \nu \bar{\nu}$	$(2.94 \pm 0.15) \times 10^{-11}$	$B_d \to \mu^+ \mu^-$	$(0.99^{+0.05}_{-0.03}) \times 10^{-10}$
$K_S \to \mu^+ \mu^-$	$(18.5 \pm 1.0) \times 10^{-12}$	$B^+ \to K^+ \nu \bar{\nu}$	$(4.45 \pm 0.62) \times 10^{-6}$
		$B^0 \to K^{0*} \nu \bar{\nu}$	$(9.70 \pm 0.92) \times 10^{-6}$

Eliminating $|V_{cb}|$ dependence: most accurate estimates to date!

$Br(B_s \rightarrow \mu\mu)$ and $|V_{cb}|$ independent estimates

Correlations between $Br(B_s \rightarrow \mu\mu)^{1.4}$ and $Br(K^+ \rightarrow \pi^+ \nu \nu)$ [R₁]

Conclusions

$\left| \mathbf{V}_{cb} \right|$ independent analysis

- $|V_{cb}|$ independent ratios of observables in the SM
- $\mid V_{cb} \mid$ independent SM predictions for rare K and B decays

 $s,d \rightarrow \mu\mu$)

4. Correlations between $Br(B_{s,d} \rightarrow \mu\mu)^{1.4}$ and $Br(K^+ \rightarrow \pi^+ \nu \nu)$

 $Br(B_s \rightarrow \mu \mu)$ measurements (LHCb, CMS, ATLAS) to be improved by LHC,

 γ by LHCb and Belle II, Br(K⁺ $\rightarrow \pi^+ \nu \nu$) by NA62

