An *eclectic* approach to the flavor (symmetry) problem

Saúl Ramos-Sánchez

Discrete 20–21 Bergen

December 2, 2021

From various collaborations with

M-C. Chen, V. Knapp-Pérez, M. Ramos-Hamud, M. Ratz & S. Shukla: 1909.06910 & 2108.02240

A. Baur, M. Kade, H.P. Nilles & P. Vaudrevange: 2001.01736, 2004.05200, 2008.07534, 2010.13798, 2104.03981

The flavor puzzle and its potential solutions

Flavor puzzle

Despite the great success of the SM

 Need to explain
 three flavors of SM particles observed mass hierarchies observed quark and lepton mixing *textures* CP violation in CKM and PMNS neutrino physics ...

See Penedo's and Feruglio's talk

$$\left(\begin{array}{cccc} 0.974 & 0.224 & 0.0039 \\ 0.218 & 0.997 & 0.042 \\ 0.008 & 0.039 & 1.019 \end{array} \right)_{CKM}, \qquad \left(\begin{array}{cccc} 0.829 & 0.539 & 0.147 \\ 0.493 & 0.584 & 0.645 \\ 0.262 & 0.607 & 0.75 \end{array} \right)_{PMNS}$$

$$\begin{split} m_{u_i} &\sim 2.16, 1270, 172900 \; \text{MeV} \\ m_{d_i} &\sim 4.67, 93, 4180 \; \text{MeV} \end{split}$$

$$\begin{split} \Delta m^2_{21} &= 7.4 \cdot 10^{-5}, \Delta m^2_{31(23)} \approx 2.5 \cdot 10^{-3} \ \mathrm{eV}^2 \\ m_{e_i} &\sim 0.511, 105.7, 1776.9 \ \mathrm{MeV} \end{split}$$

normal ordering

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Okki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019)

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) Freedom in e.g. vev *alignment* affects predictability \bigcirc

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) Freedom in e.g. vev *alignment* affects predictability \bigcirc

<u>Modular</u>: finite modular groups $\Gamma_N, \Gamma'_N = \text{modular flavor sym. } G_{modular}$: $\Gamma_N \cong S_3, A_4, S_4, A_5, \quad \Gamma'_N \cong S_3, T', \text{SL}(2, 4), \text{SL}(2, 5) \quad \text{for} \quad N = 2, 3, 4, 5$ 9 ν observables $(m_{\nu}, \theta_{ij}, \text{ phases})$ by fixing 3 parameters! Feruglio, Romanino, Ding, Liu, Kobayashi, Petcov, Penedo, and many others; see Penedo's and Feruglio's talks

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) Freedom in e.g. vev *alignment* affects predictability \bigcirc

 $\begin{array}{ll} \underline{\text{Modular}:} & \text{finite modular groups } \Gamma_N, \Gamma'_N = \text{modular flavor sym. } G_{modular}:\\ \Gamma_N \cong S_3, A_4, S_4, A_5, \quad \Gamma'_N \cong S_3, T', \mathrm{SL}(2,4), \mathrm{SL}(2,5) \quad \text{for} \quad N=2,3,4,5\\ 9 \ \nu \ \text{observables} \ (m_\nu, \ \theta_{ij}, \ \text{phases}) \ \text{by fixing 3 parameters!}\\ & \text{Feruglio, Romanino, Ding, Liu, Kobayashi, Petcov, Penedo, and many others; see Penedo's and Feruglio's talks} \end{array}$

Kähler potential (which sets the shape of kinetic terms) is not restricted \rightarrow extra terms destroy predictability CChen, SRS, Ratz (1909.06910)

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) Freedom in e.g. vev *alignment* affects predictability \bigcirc

 $\begin{array}{ll} \underline{\text{Modular}:} & \text{finite modular groups } \Gamma_N, \Gamma'_N = \text{modular flavor sym. } G_{modular}:\\ \Gamma_N \cong S_3, A_4, S_4, A_5, \quad \Gamma'_N \cong S_3, T', \mathrm{SL}(2,4), \mathrm{SL}(2,5) \quad \text{for} \quad N=2,3,4,5\\ 9 \ \nu \ \text{observables } (m_\nu, \ \theta_{ij}, \ \text{phases}) \ \text{by fixing 3 parameters!}\\ & \text{Feruglio, Romanino, Ding, Liu, Kobayashi, Petcov, Penedo, and many others; see Penedo's and Feruglio's talks} \end{array}$

Kähler potential (which sets the shape of kinetic terms) is not restricted \rightarrow extra terms destroy predictability CChen, SRS, Ratz (1909.06910)

Freedom in choice of symmetries, matter representations, modular weights, Yukawa modular forms, moduli vevs,...

<u>Traditional</u>: discrete non-Abelian flavor symmetries G_{flavor} lead to models for quarks and leptons with great fits, $\theta_{13} \neq 0,...$ requiring careful choice of flavon sector and flavon vevs see reviews by Ishimori, Kobayashi, Ohki, Okada, Shimizu, Tanimoto (2010); Feruglio, Romanino (2019) Freedom in e.g. vev *alignment* affects predictability \bigcirc

 $\begin{array}{ll} \underline{\text{Modular}:} & \text{finite modular groups } \Gamma_N, \Gamma'_N = \text{modular flavor sym. } G_{modular}:\\ \Gamma_N \cong S_3, A_4, S_4, A_5, \quad \Gamma'_N \cong S_3, T', \mathrm{SL}(2,4), \mathrm{SL}(2,5) \quad \text{for} \quad N=2,3,4,5\\ 9 \ \nu \ \text{observables } (m_\nu, \ \theta_{ij}, \ \text{phases}) \ \text{by fixing 3 parameters!}\\ \hline \text{Feruglio, Romanino, Ding, Liu, Kobayashi, Petcov, Penedo, and many others; see Penedo's and Feruglio's talks} \end{array}$

Kähler potential (which sets the shape of kinetic terms) is not restricted \rightarrow extra terms destroy predictability CChen, SRS, Ratz (1909.06910)

Freedom in choice of symmetries, matter representations, modular weights, Yukawa modular forms, moduli vevs,...

In this talk

A possible solution inspired by string theory

Effective ingredients for flavor from strings

A flavor of

strings

 $\mathsf{particles}\longleftrightarrow\mathsf{strings}$

- SUSY & 10D space-time
- matter fields get all their properties from string features
- field couplings arise from string interactions

 $\mathsf{particles}\longleftrightarrow\mathsf{strings}$

• SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

- matter fields get all their properties from string features
- field couplings arise from string interactions

 $\mathsf{particles}\longleftrightarrow\mathsf{strings}$

SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

 \rightarrow geometric discrete symmetries & modular symmetries from 6D

- matter fields get all their properties from string features
- field couplings arise from string interactions

 $\mathsf{particles} \longleftrightarrow \mathsf{strings}$

SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

 \rightarrow geometric discrete symmetries & modular symmetries from 6D

- matter fields get all their properties from string features
 <u>all</u> field charges are computable
- field couplings arise from string interactions

 $\mathsf{particles} \longleftrightarrow \mathsf{strings}$

SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

 \rightarrow geometric discrete symmetries & modular symmetries from 6D

- matter fields get all their properties from string features
 - \rightarrow all field charges are computable

 \rightarrow include discrete charges/representations & modular weights

• field couplings arise from string interactions

 $\mathsf{particles} \longleftrightarrow \mathsf{strings}$

SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

 \rightarrow geometric discrete symmetries & modular symmetries from 6D

- matter fields get all their properties from string features
 - \rightarrow <u>all</u> field charges are computable

 \rightarrow include discrete charges/representations & modular weights

- field couplings arise from string interactions
 - \rightarrow coupling strengths are computable

 $\mathsf{particles} \longleftrightarrow \mathsf{strings}$

SUSY & 10D space-time

 \rightarrow compactify 6D on spaces with shapes and sizes set by moduli

ightarrow geometric discrete symmetries & modular symmetries from 6D

• matter fields get all their properties from string features

 \rightarrow all field charges are computable

 $\rightarrow\,$ include discrete charges/representations & modular weights

- field couplings arise from string interactions
 - \rightarrow coupling strengths are computable

 \rightarrow couplings are modular forms with fixed properties

Matter at low energies arise from strings:

relevant matter fields are **fixed** in compact space

Matter at low energies arise from strings:

relevant matter fields are **fixed** in compact space

triangular pillow ightarrow symmetry of a triangle S_3

• $\mathbb{T}^2/\mathbb{Z}_3$

triangular pillow \rightarrow symmetry of a triangle S_3

• $\mathbb{T}^2/\mathbb{Z}_3$

triangular pillow ightarrow symmetry of a triangle S_3

• String interactions carry further constraints $\rightarrow \mathbb{Z}_3 \times \mathbb{Z}_3$ $G_{flavor} = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3) \cong \Delta(54)$ traditional = moduli independent

• $\mathbb{T}^2/\mathbb{Z}_3$

triangular pillow ightarrow symmetry of a triangle S_3

- String interactions carry further constraints $\rightarrow \mathbb{Z}_3 \times \mathbb{Z}_3$ $G_{flavor} = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3) \cong \Delta(54)$ traditional = moduli independent
 - Toroidal modulus T is free \rightarrow $\mathrm{SL}(2,\mathbb{Z})$ modular symmetry

• $\mathbb{T}^2/\mathbb{Z}_3$

triangular pillow ightarrow symmetry of a triangle S_3

- String interactions carry further constraints $\rightarrow \mathbb{Z}_3 \times \mathbb{Z}_3$ $G_{flavor} = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3) \cong \Delta(54)$ traditional = moduli independent
 - Toroidal modulus T is free \rightarrow SL $(2, \mathbb{Z})$ modular symmetry linearly realized as $G_{modular} = T' \cong \Gamma'_3$ finite modular group

Lauer, Mas, Nilles (89-90)

• $\mathbb{T}^2/\mathbb{Z}_3$

triangular pillow ightarrow symmetry of a triangle S_3

• String interactions carry further constraints $\rightarrow \mathbb{Z}_3 \times \mathbb{Z}_3$ $G_{flavor} = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3) \cong \Delta(54)$ traditional = moduli independent

• Toroidal modulus T is free \rightarrow SL $(2, \mathbb{Z})$ modular symmetry linearly realized as $G_{modular} = T' \cong \Gamma'_3$ finite modular group Lauer, Mas, Nilles (89-90)

and only a small set of modular weights:

• $\mathbb{T}^2/\mathbb{Z}_3$

triangular pillow ightarrow symmetry of a triangle S_3

• String interactions carry further constraints $\rightarrow \mathbb{Z}_3 \times \mathbb{Z}_3$ $G_{flavor} = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3) \cong \Delta(54)$ traditional = moduli independent

• Toroidal modulus T is free \rightarrow SL $(2, \mathbb{Z})$ modular symmetry linearly realized as $G_{modular} = T' \cong \Gamma'_3$ finite modular group Lauer, Mas, Nilles (89-90)

and only a small set of modular weights:

	Φ_0	Φ_{-1}	$\Phi_{-2/3}$	$\Phi_{-5/3}$	$\Phi_{-1/3}$	$\Phi_{2/3}$
$\Delta(54)$	1	1'	3_2	3_1	$ar{f 3}_1$	$ar{3}_2$
T'	1	1	$2'\oplus1$	$2'\oplus1$	$2'' \oplus 1$	$2'' \oplus 1$

Baur, Nilles, Trautner, Vaudrevange (2019); Nilles, SRS, Vaudrevange (2020)

• $\mathbb{T}^2/\mathbb{Z}_3$

triangular pillow ightarrow symmetry of a triangle S_3

• String interactions carry further constraints $\rightarrow \mathbb{Z}_3 \times \mathbb{Z}_3$ $G_{flavor} = S_3 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3) \cong \Delta(54)$ traditional = moduli independent

• Toroidal modulus T is free \rightarrow SL $(2, \mathbb{Z})$ modular symmetry linearly realized as $G_{modular} = T' \cong \Gamma'_3$ finite modular group Lauer, Mas, Nilles (89-90)

and only a small set of modular weights:

	Φ_0	Φ_{-1}	$\Phi_{-2/3}$	$\Phi_{-5/3}$	$\Phi_{-1/3}$	$\Phi_{2/3}$
$\Delta(54)$	1	1'	3_2	3_1	$ar{f 3}_1$	$ar{3}_2$
T'	1	1	$2'\oplus1$	$2'\oplus1$	$2''\oplus1$	$2'' \oplus 1$

Baur, Nilles, Trautner, Vaudrevange (2019); Nilles, SRS, Vaudrevange (2020)

• Common origin of traditional and modular flavor symmetries $G_{flavor} \cup G_{modular} = \Delta(54) \cup T' \cong \Omega(1)$ with $T' \subset Out(\Delta(54))$

Baur, Nilles, Trautner, Vaudrevange (2019)

Yukawa coupling coefficients \hat{Y} are modular forms!

modular	eclectic flavor group $\Omega(1)$								
forms	modular T' subgroup				traditional $\Delta(54)$ subgroup				
$\hat{Y}^{(n_Y)}_{\boldsymbol{s}}$	irrep \boldsymbol{s}	$\rho_{\boldsymbol{s}}(\mathbf{S})$	$\rho_{s}(T)$	n_Y	irrep \boldsymbol{r}	$\rho_{\boldsymbol{r}}(\mathbf{A})$	$\rho_{\bm{r}}(\mathbf{B})$	$\rho_{\boldsymbol{r}}(\mathbf{C})$	
$\hat{Y}^{(1)}_{2''}$	2″	$\rho_{2''}(S)$	$\rho_{2''}(T)$	1	1	1	1	1	
$\hat{Y}_{1}^{(4)}$	1	1	1	4	1	1	1	1	
$\hat{Y}_{1'}^{(4)}$	1'	1	ω	4	1	1	1	1	
$\hat{Y_{3}^{(4)}}$	3	$\rho_{3}(S)$	$\rho_{3}(T)$	4	1	1	1	1	

$$\hat{Y}_{\mathbf{2}''}^{(1)} := \left(\begin{array}{c} \hat{Y}_1(T) \\ \hat{Y}_2(T) \end{array} \right) = \left(\begin{array}{c} -3\sqrt{2} & 0 \\ 3 & 1 \end{array} \right) \left(\begin{array}{c} \eta(3T)^3/\eta(T) \\ \eta(T/3)^3/\eta(T) \end{array} \right)$$

No arbitrary modular weights n_Y nor representations s! \bigcirc

Eclectic flavor symmetries

You can also include a \mathbb{Z}_2 CP-like modular transformation! The largest *flavor* group of string models

Nilles, SRS, Vaudrevange (2020); Ohki, Uemura, Watanabe (2020)

Eclectic flavor symmetries

You can also include a \mathbb{Z}_2 CP-like modular transformation! The largest *flavor* group of string models

Nilles, SRS, Vaudrevange (2020); Ohki, Uemura, Watanabe (2020)

This happens in other string orbifolds (allowing for $Sp(4, \mathbb{Z})$ modular symmetries)

Baur, Kade, Nilles, SRS, Vaudrevange (2020-21)

Eclectic flavor symmetries

You can also include a \mathbb{Z}_2 CP-like modular transformation! The largest *flavor* group of string models

Nilles, SRS, Vaudrevange (2020); Ohki, Uemura, Watanabe (2020)

This happens in other string orbifolds (allowing for $Sp(4, \mathbb{Z})$ modular symmetries) Baur, Kade, Nilles, SRS, Vaudrevange (2020-21)

Interesting observation:

 $G_{\it flavor}$ does fix the kinetic terms of fields to their canonical form!

Nilles, SRS, Vaudrevange (2020); Chen, Knapp-Pérez, Ramos-Hamud, Ratz, Shukla (2021)

Saúl Ramos-Sánchez (UNAM - Mexico) Eclectic flavor symmetries

From top-down to bottom-up

eclectic flavor symmetries

Eclectic flavor groups

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

Eclectic flavor groups

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

Recipe to get the eclectic flavor group associated with a G_{flavor} : • Determine $Out(G_{flavor})$
Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{modular}$ is generated (via e.g. GAP)

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{modular}$ is generated (via e.g. GAP)
- $G_{eclectic} \cong$ multiplicative closure of G_{flavor} and $G_{modular}$

Key observation: T' is an outer automorphism group of $\Delta(54)$ \bigcirc

- Determine $Out(G_{flavor})$
- Pick two outer automorphisms satisfying modular Γ_N -like relations
- Verify that there are suitable (triplet) representations for matter fields
- Determine which $G_{modular}$ is generated (via e.g. GAP)
- $G_{eclectic} \cong$ multiplicative closure of G_{flavor} and $G_{modular}$
- Verify whether there is a third (class-inverting) outer automorphism that act as a \mathbb{Z}_2 CP-like transformation to further enhance the eclectic flavor symmetry

flavor group $\mathcal{G}_{\mathrm{fl}}$	GAP ID	$\operatorname{Aut}(\mathcal{G}_{\mathrm{fl}})$	finite modular groups		eclectic flavor group	
Q_8	[8, 4]	S_4	without \mathcal{CP} S_3		GL(2,3)	
0.50			with \mathcal{CP}		_	
$\mathbb{Z}_3 imes \mathbb{Z}_3$	[9, 2]	GL(2,3)	without \mathcal{CP}	S_3	$\Delta(54)$	
			with \mathcal{CP}	$S_3 \times \mathbb{Z}_2$	[108, 17]	
A_4	[12, 3]	S_4	without \mathcal{CP}	S_3	S_4	
5, 9				S_4	S_4	
176			with \mathcal{CP}	-	-	
T'	[24, 3]	S_4	without \mathcal{CP}	S_3	GL(2,3)	
			with \mathcal{CP}	3 -		
$\Delta(27)$	[27, 3]	[432, 734]	without \mathcal{CP}	S_3	$\Delta(54)$	
346 - 20				T'	$\Omega(1)$	
			with \mathcal{CP}	$S_3 \times \mathbb{Z}_2$	[108, 17]	
				$\operatorname{GL}(2,3)$	[1296, 2891]	
$\Delta(54)$	[54, 8]	[432, 734]	without \mathcal{CP}	T'	$\Omega(1)$	
			with \mathcal{CP}	$\operatorname{GL}(2,3)$	[1296, 2891]	

Nilles, SR-S, Vaudrevange (2001.01736)

Back in the $\mathbb{T}^2/\mathbb{Z}_3$ example

Restricted superpotential

Back in the $\mathbb{T}^2/\mathbb{Z}_3$ example

Restricted superpotential

More interestingly

$$K = -\log(-iT + iT) + \sum_{i} (-iT + iT)^{-2/3} |\Phi_{-2/3}^{i}|^{2}$$

Only canonical terms are allowed

 \rightarrow predictability of bottom-up models with Γ'_N recovered!

Nilles, SRS, Vaudrevange (2004.05200)

 $G_{eclectic}$ is typically a very large group \rightarrow it must be broken

 $G_{eclectic}$ is typically a very large group \rightarrow it must be broken

Breakdown happens through $\langle T \rangle$ and $\langle flavon \rangle$

Baur, Nilles, SRS, Trautner, Vaudrevange (2112.xxxx); see Trautner's talk

 $G_{eclectic}$ is typically a very large group \rightarrow it must be broken

Breakdown happens through $\langle T \rangle$ and $\langle flavon \rangle$

Baur, Nilles, SRS, Trautner, Vaudrevange (2112.xxxx); see Trautner's talk

There are ingredients to obtain dynamically both vevs

 $G_{eclectic}$ is typically a very large group \rightarrow it must be broken

```
Breakdown happens through \langle T \rangle and \langle flavon \rangle
```

Baur, Nilles, SRS, Trautner, Vaudrevange (2112.xxxx); see Trautner's talk

There are ingredients to obtain dynamically both vevs

Successful fits can be obtained 🙂

Baur, Nilles, SRS, Trautner, Vaudrevange (2201.xxxx)

In summary

• Traditional and finite modular flavor symmetries face some challenges

- Traditional and finite modular flavor symmetries face some challenges
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure = traditional \cup modular symmetries with modular Γ'_N : trafos of moduli of compact space

- Traditional and finite modular flavor symmetries face some challenges
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure = traditional \cup modular symmetries with modular Γ'_N : trafos of moduli of compact space
- *Eclectic* flavors appear in bottom-up, subject to

 $\Gamma'_N, \Gamma_N \subset Out(G_{flavor})$

ightarrow only a few compatible flavor symmetries \odot/\odot

- Traditional and finite modular flavor symmetries face some challenges
- Toroidal orbifold compactifications of string theory reveal an *eclectic* flavor structure = traditional ∪ modular symmetries with modular Γ'_N : trafos of moduli of compact space
- *Eclectic* flavors appear in bottom-up, subject to

 $\Gamma'_N, \Gamma_N \subset Out(G_{flavor})$

 \rightarrow only a few compatible flavor symmetries $\textcircled{\odot}/\textcircled{\odot}$

 In string models, more useful constraints: matter modular weights, representations and charges defined by compactification

- Traditional and finite modular flavor symmetries face some challenges
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure = traditional \cup modular symmetries with modular Γ'_N : trafos of moduli of compact space
- *Eclectic* flavors appear in bottom-up, subject to

 $\Gamma'_N, \Gamma_N \subset Out(G_{flavor})$

ightarrow only a few compatible flavor symmetries \odot/\odot

- In string models, more useful constraints: matter modular weights, representations and charges defined by compactification
- Superpotential and Kähler well restricted 🙂
 - \rightarrow predictability of modular symmetries seems rescued

(although flavons and moduli stabilization still needed; see Trautner's talk)

- Traditional and finite modular flavor symmetries face some challenges
- Toroidal orbifold compactifications of string theory reveal an eclectic flavor structure = traditional \cup modular symmetries with modular Γ'_N : trafos of moduli of compact space
- *Eclectic* flavors appear in bottom-up, subject to

$$\Gamma'_N, \Gamma_N \subset Out(G_{flavor})$$

To work on

 \rightarrow only a few comp

- In string models, mc matter modular weig compactification
- Superpotential and → predictability of r (although flavons and n

•	pheno	from	this	eclec	tic pictu	ire		
		star	t with	$\Delta(54).$	see Carballo.	Peinado.	SRS	(2016)

• CP and CP violation ?

Nilles, Ratz, Trautner, Vaudrevange (2018)

eclectic flavor breakdown

Baur, Nilles, SRS, Trautner, Vaudrevange (2112.xxxx)

- moduli stabilization
- non-supersymmetric constructions ?

Just in case...

Backup slides

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = \mathbb{1} \mod N \}$$

are normal subgroups of $SL(2,\mathbb{Z})$

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = 1 \mod N \}$$

are normal subgroups of $SL(2,\mathbb{Z})$

(Double-cover) finite modular subgroups: $\Gamma'_N \cong SL(2,\mathbb{Z})/\Gamma(N)$

Congruence modular subgroups: $\Gamma(N) \subset SL(2,\mathbb{Z})$

$$\Gamma(N) = \{ \gamma \in \operatorname{SL}(2,\mathbb{Z}) \, | \, \gamma = 1 \mod N \}$$

are normal subgroups of $\mathrm{SL}(2,\mathbb{Z})$

(Double-cover) finite modular subgroups: $\Gamma'_N \cong SL(2,\mathbb{Z})/\Gamma(N)$

$$\begin{split} \Gamma'_{N} &= \left\langle \mathbf{S}, \mathbf{T} \, | \, \mathbf{S}^{4} = (\mathbf{S}\mathbf{T})^{3} = T^{N} = \mathbb{1}, \quad \mathbf{S}^{2}\mathbf{T} = \mathbf{T}\mathbf{S}^{2}, \qquad N = 2, 3, 4, 5 \right\rangle \\ \Gamma'_{2} &\cong S_{3}, \ \Gamma'_{3} \cong T', \ \Gamma_{4} \cong \mathrm{SL}(2, 4), \ \Gamma_{5} \cong \mathrm{SL}(2, 5), \dots \\ & \text{e.g. Liu, Ding (2019)} \end{split}$$

Finite modular subgroups: $\Gamma_N \cong PSL(2,\mathbb{Z})/\overline{\Gamma}(N)$ (PSL(2, \mathbb{Z}) \cong SL(2, \mathbb{Z})/{±1})

$$\Gamma_N = \langle S, T | S^2 = (ST)^3 = T^N = 1, N = 2, 3, 4, 5 \rangle$$

 $\Gamma_2 \cong S_3, \ \Gamma_3 \cong A_4, \ \Gamma_4 \cong S_4, \ \Gamma_5 \cong A_5, \dots, \Gamma_7 \cong \Sigma(168), \dots$

e.g. de Adelhaart, Feruglio, Hagedorn (2011)

Thus far, models with modular flavor symmetries are supersymmetric

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e, \mu, \tau)^T, (u, c, t)^T, \ldots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i}

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e,\mu,\tau)^T, (u,c,t)^T, \dots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i} Couplings $\hat{Y}^{(n_Y)}(T)$ are modular forms

$$W \supset \sum \hat{Y}^{(n_Y)}(T) \Phi_{n_1} \Phi_{n_2} \Phi_{n_3}, \qquad \hat{Y}^{(n_Y)} \xrightarrow{\gamma} (cT+d)^{n_Y} \rho(\gamma) \hat{Y}^{(n_Y)}$$

 n_Y : modular weight, $\rho(\gamma)$: matrix rep. of γ for $\hat{Y}^{(n_Y)}(T)$

Thus far, models with modular flavor symmetries are supersymmetric Superfields build reps. of Γ_N or Γ'_N ; transform as

$$\Phi_{n_i} \xrightarrow{\gamma} (cT+d)^{n_i} \rho(\gamma) \Phi_{n_i}, \qquad \Phi_{n_i} \in \left\{ (e,\mu,\tau)^T, (u,c,t)^T, \dots \right\}$$

 n_i : modular weight, $\rho(\gamma)$: matrix rep. of γ for Φ_{n_i} Couplings $\hat{Y}^{(n_Y)}(T)$ are *modular forms*

$$W \supset \sum \hat{Y}^{(n_Y)}(T) \Phi_{n_1} \Phi_{n_2} \Phi_{n_3}, \qquad \hat{Y}^{(n_Y)} \xrightarrow{\gamma} (cT+d)^{n_Y} \rho(\gamma) \hat{Y}^{(n_Y)}$$

 n_Y : modular weight, $ho(\gamma)$: matrix rep. of γ for $\hat{Y}^{(n_Y)}(T)$ Admissible iff

$$W(\Phi_{n_1},\ldots) \xrightarrow{\gamma} (cT+d)^{-1} \mathbb{1} W(\Phi_{n_1},\ldots), \qquad \text{i.e. } n_Y + \sum n_i = -1, \quad \prod \rho(\gamma) = 1$$

Note the nontrivial *automorphy factor* $(cT+d)^{-1} \rightarrow W$ covariant

How to proceed with modular flavor symmetries

- Take your favorite symmetry: $G_{mod} = \Gamma_N \in \{S_3, A_4, S_4, A_5, \ldots\}$
- $\bullet\,$ Choose your favorite representations $\rho(\gamma)$ for quark and lepton fields

e.g. quark doublets Q as 3 or $\mathbf{1} \oplus \mathbf{1}' \oplus \mathbf{1}''$ of $\Gamma_3 \cong A_4, \dots$

- Pick your favorite modular weights n_i and n_Y
- Write your G_{mod} -covariant superpotential W

e.g.
$$W \supset \hat{Y}^u H_u Q \bar{u} + \hat{Y}^d H_d Q \bar{d} + \hat{Y}^e H_d L \bar{e} + \frac{\hat{Y}}{\Lambda} L H_u L H_u$$

- Take your favorite inv. Kähler potential K; typical choice $K=\sum |\Phi_{n_i}|^2$ MANY other modular invariant K possible! - Chen, SR-S, Ratz (1909.06910)
- Choose a $\langle T \rangle \neq 0 \quad \rightarrow \quad$ nontrivial rep. of $\hat{Y}(\langle T \rangle)$ breaks G_{mod}
- EW breakdown with $\langle H_u \rangle, \langle H_d \rangle \neq 0$
- Diagonalize quark and lepton matrices to compute V_{CKM} and U_{PMNS} and adjust only $\langle T \rangle$ to data

Saúl Ramos-Sánchez (UNAM - Mexico)

Eclectic flavor symmetries

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$
Groot-Nibbelink, Vaudrevange (2017)

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$

Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta = \mathbb{Z}_3$) on each 2D independent string component

 $\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$

Use Narain formalism: split string in independent components

$$X(\tau, \sigma) = X_R(\sigma - \tau) + X_L(\sigma + \tau)$$

Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta=\mathbb{Z}_3)$ on each 2D independent string component

$$\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$$

Inspiration: C, P, T in SM are outer automorphisms of the Poincaré symmetry group

Use Narain formalism: split string in independent components

$$X(au, \sigma) = X_R(\sigma - au) + X_L(\sigma + au)$$

Groot-Nibbelink, Vaudrevange (2017)

Perform \mathbb{T}^2/Θ (e.g. $\Theta=\mathbb{Z}_3)$ on each 2D independent string component

$$\mathcal{O}_{Narain} = (\mathbb{R}^2_R \otimes \mathbb{R}^2_L) / S_{Narain}$$

Inspiration: C, P, T in SM are outer automorphisms of the Poincaré symmetry group

What are the outer automorphisms of $S_{Narain} = \{g\}$?

$$Out(S_{Narain}) = \left\{ h = (\Sigma, t) \notin S_{Narain} \mid hgh^{-1} \in S_{Narain} \right\}$$

Rotations: $h_{\Sigma} = (\Sigma, 0) \rightarrow O(2, 2; \mathbb{Z})$, Translations: $h_t = (\mathbb{1}_4, t)$

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \left(\begin{array}{cc} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{array} \right), \qquad B = \operatorname{Re} T \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$$

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

	$h_{\Sigma} =$	S_U	T_U	\mathbf{S}_T	T_T	Μ	K_*
$U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

	$h_{\Sigma} =$	S_U	T_U	S_T	T_T	Μ	K_*
$U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$
Rec	all: in S	$\mathrm{L}(2,\mathbb{Z})$	T -	$\xrightarrow{\mathrm{S}} -\frac{1}{T},$	$T \stackrel{\gamma}{=}$	$\xrightarrow{\Gamma} T +$	1
Towards the *eclectic* picture: what $Out(S_{Narain})$ is

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus $T, U \parallel$

	$h_{\Sigma} =$	S_U	T_U	S_T	T_T	Μ	K_*
$U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$

 $\operatorname{SL}(2,Z)_T = \langle \operatorname{S}_T, \operatorname{T}_T \rangle, \quad \operatorname{SL}(2,Z)_U = \langle \operatorname{S}_U, \operatorname{T}_U \rangle \qquad \textcircled{\odot}$

M: mirror symmetry, K_*: CP-like transformation 🙂 Nilles, Ratz, Trautner, Vaudrevange (2018); Novichkov, Penedo, Petcov, Titov (2019)

Towards the *eclectic* picture: what $Out(S_{Narain})$ is

String 2D toroidal compactifications have two moduli: T, U

$$G = \frac{\operatorname{Im} T}{\operatorname{Im} U} \begin{pmatrix} 1 & \operatorname{Re} U \\ \operatorname{Re} U & |U|^2 \end{pmatrix}, \qquad B = \operatorname{Re} T \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Elements $h_{\Sigma} \in Out(S_{Narain})$ transform metric G, thus T, U !!

	$h_{\Sigma} =$	S_U	T_U	S_T	T_T	Μ	K_*
$U \xrightarrow{h_{\Sigma}}$		-1/U	U+1	U	U	T	$-\bar{U}$
$T \xrightarrow{h_{\Sigma}}$		T	T	-1/T	T+1	U	$-\bar{T}$

 $\operatorname{SL}(2,Z)_T = \langle \operatorname{S}_T, \operatorname{T}_T \rangle, \quad \operatorname{SL}(2,Z)_U = \langle \operatorname{S}_U, \operatorname{T}_U \rangle \qquad \textcircled{\odot}$

M: mirror symmetry, K_*: CP-like transformation 🙂 Nilles, Ratz, Trautner, Vaudrevange (2018); Novichkov, Penedo, Petcov, Titov (2019)

Further, $\{h_t\}$ don't change T, U, but do transform fields \rightarrow traditional flavor symmetry S

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! \bigcirc

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2,\mathbb{Z})_U$

Lauer, Mas, Nilles (1989)

24/24

By using CFT formalism, inspect $SL(2,\mathbb{Z})_T$ on the triplet of matter fields:

$$h_{\Sigma}: \rho(\mathbf{S}_T) = \frac{\mathrm{i}}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega^2 & \omega\\ 1 & \omega & \omega^2 \end{pmatrix}, \quad \rho(\mathbf{T}_T) = \begin{pmatrix} \omega^2 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

 $ho(\mathrm{S}_T)$ and $ho(\mathrm{S}_T)$ build the reps. $\mathbf{2'}\oplus\mathbf{1}$ of modular group $\Gamma_3'=T'$ \bigcirc

$$\Phi_{n=-\frac{2}{3},-\frac{5}{3}} \xrightarrow{\mathbf{S}_T} (-T)^n \rho(\mathbf{S}_T) \Phi_n, \qquad \Phi_n \xrightarrow{\mathbf{T}_T} \rho(\mathbf{T}_T) \Phi_n$$

Saúl Ramos-Sánchez (UNAM - Mexico)

Eclectic flavor symmetries

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2, \mathbb{Z})_U$

By using CFT formalism, inspect $SL(2,\mathbb{Z})_T$ on the triplet of matter fields:

$$h_t: \rho(\mathbf{A}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \ \rho(\mathbf{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \ \rho(\mathbf{C}) = \rho(\mathbf{S}_T^2)$$

 $\begin{array}{l}\rho(A)\text{, }\rho(B)\text{ and }\rho(C)\text{ build the reps }\mathbf{3}_{2(1)}\text{ and }\mathbf{3}_{1(1)}\text{ of traditional flavor}\\ \text{group }\Delta(54)\text{ for }\Phi_{-2/3}\text{ and }\Phi_{-5/3} & \text{ }_{\text{f. also in Kobayashi, Plöger, Nilles, Raby, Ratz (2006)}\end{array}$

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2,\mathbb{Z})_U$ e_2 first eclectic flavor symmetry: modular + traditional flavor

$$\begin{split} \Delta(54)\cup T' &\cong \Omega(1) = SG[648,533] \\ \text{with } \mathcal{CP}: \ \Delta(54)\cup T'\cup \mathbb{Z}_2^{\mathcal{CP}} \cong SG[1296,2891] \end{split}$$

Modular weights n_i , representations and couplings of Φ_{n_i} not *ad hoc*! Example $\mathbb{T}^2/\mathbb{Z}_3$: must fix U to $\langle U \rangle = \omega = e^{2\pi i/3} \rightarrow \text{broken } \text{SL}(2,\mathbb{Z})_U$ e_2 first eclectic flavor symmetry: modular + traditional flavor

> $\Delta(54) \cup T' \cong \Omega(1) = SG[648, 533]$ with CP: $\Delta(54) \cup T' \cup \mathbb{Z}_2^{CP} \cong SG[1296, 2891]$ Can we generalize this in a bottom-up fashion ?