Stability of open-string models with broken supersymmetry

Hervé Partouche

CNRS and Ecole Polytechnique

September 10, 2020

In collaboration with Steven Abel (Durham University) and Thibaut Coudarchet (Ecole Polytechnique)
Nucl. Phys. B 957 (2020) 115100 and work in progress

9th International Conference on New Frontiers in Physics, Kolympari

Introduction

- \blacksquare How moduli can acquire masses in a \sim flat space?
- Our approach:
- Consider models at tree level, where supersymmetry is spontaneously broken in Minkowski space-time.
- \bullet At the quantum level, loop corrections induce an effective potential $\mathcal{V}(\text{moduli}).$
 - We want to find minima.

The ideal goal would be to find minima satisfying $\langle \mathcal{V} \rangle \gtrsim 0$.

■ Concretely: Break susy by a string version of the "Scherk-Schwarz mechanism" *i.e.* at a scale [Rohm,'84][Ferrara, Kounnas, Porrati,'88],

[Blum, Dienes,'97][Antoniadis, Dudas, Sagnotti,'98]

$$M = \frac{1}{R}$$
, where R is an internal radius

- \blacksquare Compute $\mathcal{V}(\text{moduli})$ at one loop
- If we sit at a point in moduli space where M is lower than all other mass scales of the model (string scale, or from other moduli), then \mathcal{V} is **extremal** with respect to all moduli, except M, and up to exponentially suppressed terms

$$\mathcal{V} = M^d (n_{\rm F} - n_{\rm B}) \xi + \mathcal{O}\left((M_{\rm s} M)^{\frac{d}{2}} e^{-2\pi c \frac{M_{\rm s}}{M}} \right)$$

 $_{\diamond}$ $n_{\rm F},\,n_{\rm B}$ are the number of massless fermionic and bosonic degrees of freedom,

- $\updelta\,\xi>0$ is the contribution of all KK modes along the Scherk-Schwarz directions,
- $_{\diamond}$ $cM_{\rm s}$ is the lowest mass scale above M. (e.g. 2 orders of magnitude larger)

$$\mathcal{V} = M^d (n_{\rm F} - n_{\rm B}) \xi + \mathcal{O}\left((M_{\rm s} M)^{\frac{d}{2}} e^{-2\pi c \frac{M_{\rm s}}{M}} \right)$$

■ We want to find the extrema that are **minima**, with $n_{\rm F} = n_{\rm B}$ i.e. Bose/Fermi degeneracy at the massless level

 \implies Moduli are stabilized at one loop, except M, the dilaton and possible flat directions.

- In Type I string on T^{10-d} , with Scherk-Schwarz along one circle:
- Restrict to brane configurations consistent non-perturbatively (Heterotic dual exist).
 - \bullet The minima with respect to all moduli except M have $n_{\rm F}-n_{\rm B}<0,$
 - \bullet except a single minimum with no open string gauge group,

$$n_{
m F}-n_{
m B}=64,\,d\leq5.$$
 [Abel, Dudas, Lewis, H.P., '18], [Angelantonj, H.P., Pradisi, '19]

$$\frac{T^4}{\mathbb{Z}_2} \times T^2$$

[Bianchi, Sagnotti, '91]

[Gimon, Polchinski,'96]

with Scherk-Schwarz along one direction of T^2 , i.e. $\mathcal{N} = 2 \to \mathcal{N} = 0$ in d = 4.

Type IIB orientifold model contains 32 D9-branes, 32 D5-branes, and one O5-plane at each of the 16 orbifold fixed points.

■ Moduli in the open string sector

- In the Dirichlet-Dirichlet (DD) sector:
 - \diamond Positions of the D5-branes in T^4/\mathbb{Z}_2 .
- \diamond Wilson lines along T^2 of the gauge bosons on the stacks of D5's.
- In the Neumann-Neumann (NN) sector: Similar to DD, by T-duality on T^4/\mathbb{Z}_2 .
 - Moduli in the Neumann-Dirichlet (ND) sector.

■ Moduli in the closed string sector

- Untwisted sector:
 - \diamond Internal metric G_{IJ} in the NS-NS sector.
 - \diamond Two-form C_{IJ} in the Ramond-Ramond sector.
- Twisted sector: Blowing up modes localized at the each of the 16 orbifold fixed points of T^4/\mathbb{Z}_2 .

Moduli in DD and NN sectors

- The positions of the 32 D5-branes in T^4/\mathbb{Z}_2 must be invariant
- under the orientifold generator: A D5-brane at X^I admits a "mirror brane" at $-X^I$.
 - under the \mathbb{Z}_2 generator: A D5-brane at X^I has an image at $-X^I$.
- \blacksquare 4n D5-branes at a fixed point can move in the bulk :

$$U(2n) \rightarrow Sp(2)^n$$
, rank $2n \rightarrow n$

 \blacksquare If there are 4n+2 D5-branes at a fixed point, 2 have rigid positions in T^4/\mathbb{Z}_2

$$U(2n+1) \rightarrow Sp(2)^n \times U(1)$$

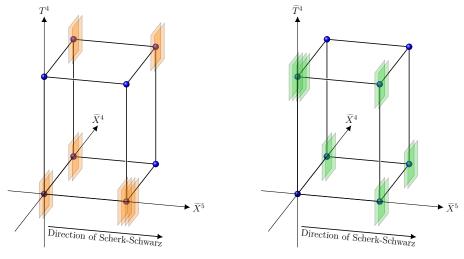
- \implies There are distinct components in moduli space, with $0, 2, 4, \ldots, 32$ D5 branes rigid in $T^4/\mathbb{Z}_2 \implies$ improves stability.
 - Non-perturbative consistency: Only 0, 16 or 32 rigid branes

- The Wilson lines along T^2 of the gauge bosons living on the world volume of the D5-branes can be mapped into positions by T-dualizing T^2 .
 - The 32 D5-branes become 32 D3-branes.
 - The internal space becomes

$$\left(\frac{T^4}{\mathbb{Z}_2} \times \tilde{T}^2\right) \bigg/ I_{456789}$$

$$I_{456789}$$
 : $(\tilde{X}^{4,5}, X^{6,7,8,9}) \rightarrow -(\tilde{X}^{4,5}, X^{6,7,8,9})$

 \bullet The 16 O5-planes are replaced by 16 \times 4 O3-planes at the fixed points.



■ D9-branes and D5-branes are exchanged under T-duality on T^4/\mathbb{Z}_2 . We can T-dualize all 6 directions to map their moduli into positions of 32 D3-branes in

$$\left(\frac{\tilde{T}^4}{\mathbb{Z}_2} \times \tilde{T}^2\right) \middle/ I_{456789}$$

Susy breaking and spectrum

- Scherk-Schwarz mechanism along the direction X^5 of T^2 .
- In Field Theory: Kaluza-Klein theory in $\mathbb{R}^{1,3} \times S^1$, with different boundary conditions for the bosonic and fermionic fields along the extra dimension

$$(\text{KK mass})^2 = \left(m_4 + \frac{F}{2} + a_{\alpha}^5 - a_{\beta}^5\right)^2 G^{55} M_s^2$$

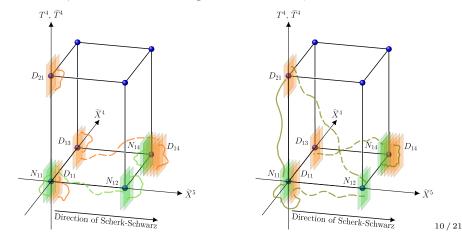
- F = 0 for Bosons, F = 1 for Fermions.
- In the NN sector, a_{α}^5 , a_{β}^5 are Wilson lines along X^5 .
- In the T-dual picture, the string is attached between two D3-branes α, β whose coordinates along \tilde{X}^5 are $a_{\alpha}^5, a_{\beta}^5$.

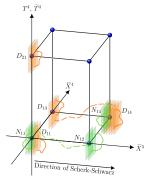
$$\implies$$
 Susy breaking scale $M = M_{\rm s} \frac{\sqrt{G^{55}}}{2}$

■ Massless fermions arise when

$$a_{\alpha}^{5} - a_{\beta}^{5} = \frac{1}{2}$$
 i.e. strings stretched along \tilde{X}^{5}

- \blacksquare The extrema of the effective potential arise when all D3-branes sit on fixed points.
- Label the 16×4 fixed points by i, i', where i = 1, ..., 16 and i' = 1, ..., 4.
- $N_{ii'}$ (or $D_{ii'}$) = Number of D3-branes T-dual to the D9-branes (or D5-branes) located on the O3-plane at corner i, i'.







- The massless spectrum at tree level contains the Bosonic parts of
 - $\mathcal{N} = 2$ vector multiplets in $\prod_{i,i'} U(N_{ii'}/2) \times U(D_{ii'}/2)$
- \bullet hypermultiplets in antisymmetric \oplus antisymmetric of each U-factor
 - bifundamentals of each pair $U(N_{ii'}/2) \times U(D_{ii'}/2)$.
- Fermionic parts of hypermultiplets in bifundamentals

Masses from the effective potential

- $\blacksquare \mathcal{V}$ is the vacuum to vacuum amplitude. At one loop: Torus, Klein bottle, annulus and Möbius strip.
- It is expressed in terms of the one loop partition functions, which are known for arbitrary marginal deformations of the
- Open string moduli in the NN and DD sectors (D3-brane positions)
 - \bullet Closed string moduli G_{IJ} in NS-NS sector (internal metric)

$$\begin{aligned} \text{NN}: \ a_{\alpha}^{I} &= \langle a_{\alpha}^{I} \rangle + \epsilon_{\alpha}^{I} \,, \qquad \text{DD}: \ \tilde{a}_{\alpha}^{I} &= \langle \tilde{a}_{\alpha}^{I} \rangle + \tilde{\epsilon}_{\alpha}^{I} \,, \qquad \langle a_{\alpha}^{I} \rangle, \langle \tilde{a}_{\alpha}^{I} \rangle \, \in \, \left\{ 0, \frac{1}{2} \right\} \\ \mathcal{V} &= M^{4} \sum_{n} \frac{\mathcal{N}_{2n+1}(\epsilon, \tilde{\epsilon}, G)}{|2n+1|^{5}} + \mathcal{O}\left((M_{\text{s}}M)^{2} e^{-2\pi c \frac{M_{\text{s}}}{M}} \right) \\ &= M^{4} (n_{\text{F}} - n_{\text{B}}) \xi + \frac{M_{\text{s}}^{2}}{2} \left(\epsilon_{r}^{I} \, \mathcal{M}_{r}^{2IJ} \, \epsilon_{r}^{J} + \tilde{\epsilon}_{r}^{I} \, \tilde{\mathcal{M}}_{r}^{2IJ} \, \tilde{\epsilon}_{r}^{J} \right) + \cdots \end{aligned}$$

where r runs over the independent positions.

• No tadpole
$$\implies$$
 Extremum

$$\mathcal{V} = M^4(n_{\rm F} - n_{\rm B})\xi + \frac{M_{\rm s}^2}{2} \left(\epsilon_r^I \mathcal{M}_r^{2IJ} \epsilon_r^J + \tilde{\epsilon}_r^I \tilde{\mathcal{M}}_r^{2IJ} \tilde{\epsilon}_r^J \right) + \cdots$$

 \blacksquare For \tilde{T}^4/\mathbb{Z}_2 positions

$$\mathcal{M}_r^{2IJ} \propto \left(N_{i(r)i'(r)} - N_{i(r)\hat{\imath}'(r)} - 2\right) G^{IJ} M^2$$

where $N_{i(r)i'(r)}$ is the number of D3-branes at the stack where the position oscillates, and $N_{i(r)\hat{i}'(r)}$ is that in front, along the Scherk-Schwarz direction.

■ For \tilde{T}^2 positions:

$$\mathcal{M}_r^{2IJ} \propto \left(N_{i(r)i'(r)} - N_{i(r)\hat{i}'(r)} - 2 + \frac{1}{4} \sum_i \left(D_{ji'(r)} - D_{j\hat{i}'(r)} \right) \right) \times (>0) M^2$$

■ When all ϵ_r^I , $\tilde{\epsilon}_r^I$ are stabilized at 0,

$$\mathcal{V} = M^4 (n_{
m F} - n_{
m B}) \xi + \mathcal{O} \left((M_{
m s} M)^2 e^{-2\pi c rac{M_{
m s}}{M}}
ight)$$

 $\implies G^{IJ}$ present in the mass terms disappear: Flat directions !! (Up to exponentially suppressed terms.) Except $G^{55} = 2M^2$.

Op up exponentially suppressed terms.) Except G = 2M.

- \blacksquare To see how closed string moduli can be stabilized : Use of the Heterotic/Type I duality (weak/weak duality for $d \leq 5$)
- $(G+C)_{IJ}$ is mapped to $(G+B)_{IJ}$, where B_{IJ} is the antisymmetric tensor.
- \bullet There are states with non-trivial winding numbers along $T^4/\mathbb{Z}_2\times T^2$
 - \diamond that have tree level masses dependent on $(G+B)_{IJ}$.
- \diamond They are charged under the Cartan $U(1)^6$, and become massless at special values of $(G+B)_{IJ}$, thus enhancing $U(1)^6$ to a non-Abelian group.
 - \diamond Around these points, $\mathcal{V}_{\mathrm{Het}}$ gets additional negative contributions
 - \Longrightarrow Some of the $(G+B)_{IJ}$ are stabilized there.
- \bullet In Type I, these winding states are D1-strings: Non-perturbative effect.

Masses from anomaly cancellation

■ On T^4/\mathbb{Z}_2 , the $\mathcal{N}=1$ theory in 6 dim is chiral

$$\prod_{i=1}^{10} U(N_i/2) \times U(D_i/2) , \quad \text{rank} = 32 , \quad \text{has anomalous } U(1) \text{'s}$$

- \blacksquare The twisted sector contains, localized at each of the 16 fixed points,
 - RR 4-forms $C_4^i \stackrel{\text{Hodge}}{\longrightarrow} 0$ -forms C_0^i
 - 3 NS-NS real scalars
- Anomaly cancellation requires tree level couplings between these forms and the 32 U(1) field strengths dA_a ,

[Berkooz, Leigh, Polchinski, Schwarz, Seiberg, Witten, '96]

15/21

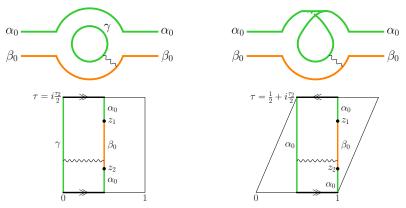
$$\implies \sum_{i} \int \left(C_0^i + \sum_{a} \frac{c_{ia} A_a}{a} \right) \wedge * \left(C_0^i + \sum_{b} \frac{c_{ib} A_b}{a} \right)$$

where c_a^i depend on the distribution of the D5-branes on the fixed points, and the distribution of the T-dual of the D9-branes.

- \blacksquare If there are 16 (or more) U factors,
 - 16 of them become SU,
 - all C_0^i are "eaten". All twisted scalars massive.
 - $\Longrightarrow T^4/\mathbb{Z}_2$ cannot be deformed to K3.
- In four dimensions, the components along T^2 of the massive U(1)'s are automatically stabilized.
- \implies We have less constraints to impose for all Wilson lines to be stabilized.

Masses from 2-point functions

- Strings stretched between stacks $N_{ii'}$ and $D_{ji'}$
- \implies massless scalars in bifundamentals of $U(N_{ii'}/2) \times U(D_{ji'}/2)$.
- \blacksquare Open string analogue of closed string twisted states: We don't know the partition function and $\mathcal V$ for arbitrary vev. [Abel, Coudarchet, H.P, in progress]



⇒ 2-point functions of "Boundary Changing vertex Operators"

■ The vertex operator in ghost picture −1 involves

"boundary-changing operators" σ^{67} , σ^{89} for the directions 6,7 and 8,9 $V^{\alpha_0\beta_0}(z, h) = \lambda - e^{-\phi} e^{ik \cdot X} e^{\frac{i}{2}(H_{67} - H_{89})} \sigma^{67} \sigma^{89}$

$$V_{-1}^{\alpha_0\beta_0}(z,k) = \lambda_{\alpha_0\beta_0} e^{-\phi} e^{ik \cdot X} e^{\frac{i}{2}(H_{67} - H_{89})} \sigma^{67} \sigma^{89}$$

■ In ghost picture 0, $V_0^{\alpha_0\beta_0}(z,k)$ involves τ^{67} , τ'^{67} and τ^{89} , τ'^{89} $Z \equiv \frac{X^6 + iX^7}{\sqrt{2}} , \qquad \partial Z(z)\sigma^{67}(w) \sim (z - w)^{-\frac{1}{2}}\tau^{67}(w) + \text{finite}$

$$\partial \bar{Z}(z)\sigma^{67}(w) \sim (z-w)^{-\frac{1}{2}} \tau'^{67}(w) + \text{finite}$$

$$\blacksquare Z = Z_{cl} + Z_{qu} \implies \langle \sigma(z_1)\sigma(z_2) \rangle = \sum_{\text{Instanton}} e^{-S_{cl}} \langle \sigma(z_1)\sigma(z_2) \rangle_{qu}$$
where $\langle \sigma(z_1)\sigma(z_2) \rangle_{qu} = C(\tau) \times \text{(function of } z_1, z_2, \tau)$

• is computed by the "Stress Tensor Method". [Atick, Dixon, Griffin,

Nemeschansky, '88], [Abel, Schofield, '04]

• $C(\tau)$ is an "integration constant" determined by taking the limit $z_1 - z_2 \to 0$, which reduces to the partition function.

■ Because τ is created by acting with $\partial Z = \partial(Z_{\rm cl} + Z_{\rm qu})$ on σ $\langle \tau(z_1)\tau'(z_2)\rangle_{\rm qu} = \langle \sigma(z_1)\sigma(z_2)\rangle_{\rm qu} \left[\mathcal{O}(R_{6,7,8,9}^2) + \mathcal{O}(\alpha') \right]$

 \blacksquare Take a limit so that KK modes along the Scherk-Schwarz direction X^4 dominate

$$\alpha' \to 0$$
, $R_I = \sqrt{\alpha'} r_I \to 0$, $\frac{\alpha'}{R_I} = \sqrt{\alpha'} \frac{1}{r_I} \to 0$, $I = 5$ and 6,7,8,9 *i.e.* string oscillators, KK and windings modes in the directions 5 and

 \blacksquare Integrate over the position of the vertices and length of the annulus and Möbius strip

$$(\mathcal{M}^{\alpha_0\beta_0})^2 \propto \left[(N_{ii'} - N_{i\hat{i}'} - 2) + (D_{ji'} - D_{j\hat{i}'} - 2) \right] M^2 ,$$

6,7,8,9 are infinitely massive.

where i, \hat{i}' (or j, \hat{i}') is the fixed point separated from the fixed point i, i' (or j, i') along the Scherk-Schwarz direction.

NB: Masses similar to those of the positions in T^4/\mathbb{Z}_2 and \tilde{T}^4/\mathbb{Z}_2 .

Tachyon free models at one loop

- \blacksquare There are $\sim 10^{11}$ inequivalent distributions of the D3-branes on the fixed points.
- \blacksquare Computer scan \implies Only 2 have $n_{\rm F} = n_{\rm B}$ and are tachyon free
 - The anomaly free gauge groups are
 - (a): $U(1) \times SU(2)_{DD} \times SU(7)_{DD} \times SU(5)_{NN}^2$
 - (b): $U(1) \times SU(3)_{DD} \times SU(6)_{DD} \times SU(5)_{NN}^2$
 - Half of the branes are rigid in 6 dimensions.
 - All dynamical positions in 4 dimensions are massive.
- All closed string twisted moduli are massive. T^4/\mathbb{Z}_2 is not deformed.
- \bullet Flat directions at one loop: Closed string moduli $(G+C)_{IJ},\,M,$ dilaton.

Conclusion

- Type I models realizing $\mathcal{N} = 2 \to \mathcal{N} = 0$ in 4 dimensions can have all open string moduli stabilized at one loop.
- \blacksquare Thanks to a massless Bose/Fermi degeneracy (at tree level), the supersymmetry breaking scale M is a flat direction (at one loop), up to exponentially suppressed corrections.
- \blacksquare This may be good: Can M and the dilaton be stabilized at weak coupling by taking into account in the Effective Potential

one loop level
$$\mathcal{O}(e^{-2\pi c \frac{M_s}{M}})$$
 + two loops?

■ Contributions to the potential of D1-brane becoming massless can stabilize some of the untwisted closed string moduli $(G+C)_{IJ}$.