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Introduction: QCD and the axion

▸ QCD is perhaps the most satisfying building block of the Standard Model (SM):
it is asymptotically free (AF) and agrees well with experiments

▸ It is surprising that the SM Yukawa interactions break CP while QCD doesn’t.
A possible explanation was proposed by Peccei and Quinn (PQ): an approximate
global chiral and spontaneously broken U(1) symmetry was proposed. This
U(1)PQ manifests at low energy with the axion

▸ Computable models introduce extra scalars, whose quartic typically suffer from
Landau poles, which spoil asymptotic freedom



Building a fundamental field theory of the QCD axion

A way out: one can gauge the axion sector with a non-Abelian group.

Minimal model

The axion sector features an SU(2) gauge group (henceforth SU(2)a) and

▸ two extra Weyl fermions q and q̄ with the same PQ charge and in the
fundamental and antifundamental of SU(3)c×SU(2)a

▸ A complex scalar A in the adjoint of SU(2)a and neutral under SU(3)c

such that we can write Ly = −yq̄Aq +H.c.

A features the generic potential

VA = −m2Tr(A†A) + λ1Tr2
(A†A) + λ2∣Tr(AA)∣

2

The λi have LPs unless y acquires a non-vanishing IR attractive value and λi ∝ g2
s in

the UV, with specific proportionality factors
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Building a fundamental field theory of the QCD axion

Renormalization group analysis of the minimal model

dg2

dt
= −bg4 ba =

14

3
, bs =

29

3
−∆

where t ≡ ln(µ2/µ2
0)/(4π)

2 and ∆ is the positive extra contribution due to the

fermions and scalars in the SM sector. The λi have to have the UV behavior λi = λ̃i/t
with the following values of (λ̃1, λ̃2)

The unstable vacua have to be excluded so the λi are predicted at low energies like y

Fixing gs and ga at low
energies we then get a totally
asymptotically free (TAF) axion
model
(In the plot we set ∆ = 28/3)
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We assume that gravity is “softened” in the UV

(Einstein) gravitational interactions increase with energy

Idea (softened gravity):

consider theories where the increase
of the gravitational coupling →
stops at some ΛG ≪MPl. [Isidori,
Giudice, Salvio, Strumia (2015)]

Λ��� �� Λ� ��� → ∞ ������

�����

���-������������

�������� �������⟶

↙ �������� �������

We will also require that the PQ symmetry breaking scale fa satisfies

fa ≲ ΛG

This ensures that gravity, as far as the production of gravitational waves is concerned,
is well-described by Einstein’s theory

https://inspirehep.net/literature/201492
https://inspirehep.net/literature/201492
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Quantum generation of the Peccei-Quinn (PQ) scale

We can obtain an even more predictive model by breaking the PQ symmetry through
the Coleman-Weinberg (CW) mechanism: in that case there is one less adjustable
parameter

VA = −�����
m2Tr(A†A) + λ1Tr2

(A†A) + λ2∣Tr(AA)∣
2

At a scale µPQ where λ ≡ λ1 + λ2 = 0 the effective potential develops a flat direction

(A = A†). More generically we assume m≪ µPQ.

This leads to

VCW(φ) =
β̄

4
(ln(

φ

fa
) −

1

4
)φ4, where β̄ ≡ [µ

dλ

dµ
]

µ=µPQ

In the plot we show how eventually λ
crosses zero at low energies:
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4
(ln(

φ

fa
) −

1

4
)φ4, where β̄ ≡ [µ

dλ

dµ
]

µ=µPQ

The TAF axion sector features only one
dimensionless parameter, which can be
taken to be ḡs ≡ gs(tPQ):

once the gauge couplings are chosen at
µ = µPQ the other couplings ȳ, λ̄1 and
λ̄2 are predicted and one must consider
a particular IR value of one of the gauge
couplings, say ḡa, to enforce λ̄1 + λ̄2 = 0
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Peccei-Quinn phase transition
We consider the one-loop effective potential

Veff(φ,T ) ≡ VCW(φ) + VT (φ) +Λ0,

where VT is the thermal part and Λ0 accounts for the observed value of the
cosmological constant

The CW mechanism leads to a strongly first-order phase transition
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Figure: In the left plot the example ḡs ≈ 0.91 has been considered and a constant has been added
such that Veff(0, T ) = 0

(previously observed in effective models with CW symmetry breaking: [Witten (1981);
delle Rose et al (2019); von Harling et al (2019)] )

https://inspirehep.net/literature/153599
https://inspirehep.net/literature/1770756
https://inspirehep.net/literature/1771000


Peccei-Quinn phase transition: supercooling
Decay rate per unit volume Γ of the false vacuum φ = 0 into the true vacuum φ ≠ 0

For T < Tc we have [Coleman (1977); Callan,
Coleman (1980); Linde (1981); Linde (1983)]

Γ ≈ max(T 4
(
S3

2πT
)

3/2

e−S3/T ,
1

R4
4

(
S4

2π
)

2

e−S4)

Sd is the action

Sd =
2πd/2

Γ(d/2)
∫

∞

0
dr rd−1

(
1

2
φ′2 + Veff(φ,T ))

evaluated at the O(d) bounce:

φ′′+
d − 1

r
φ′ =

dVeff

dφ
, φ′(0) = 0, lim

r→∞
φ(r) = 0

ḡs = 0.91 and

T ≈ 1×10−2 Tc ≈ 2×10−3fa

O(3) bounce

O(4) bounce
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Nucleation temperature Tn

φ is trapped (φ = 0) until T ≪ Tc; the
universe features a phase of strong
supercooling and the universe inflates with

Hubble rate HI =
√
β̄f2
a/(4

√
3M̄Pl).

Tn corresponds to Γ/H4
I ∼ 1 or

S3

Tn
−

3

2
ln(

S3/Tn

2π
) = 4 ln(

Tn

HI
)
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Peccei-Quinn phase transition: reheating and duration

Reheating

At the end of supercooling the universe should be reheated. This occurs thanks to the
unavoidable coupling between the axion and the SM sectors due to gluons, leading to

Γφ→gg ∼
ȳ2ḡ4

sM
3
φ

(4π)5M2
Q

→ TRH =
⎛

⎝
min

⎛

⎝

45Γ2
φ→ggM̄

2
Pl

4π3g∗
,

15β̄f4
a

8π2g∗

⎞

⎠

⎞

⎠

1/4

Duration of the phase transition

The inverse of the duration of the
phase transition is defined by

β ≡ [
1

Γ

dΓ

dt
]
Tn

This quantity, for fast reheating, can be
computed with the formula

β

HI
= [T

d

dT
(S3/T ) − 4]

T=Tn
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ȳ2ḡ4
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Monopole dilution

Strong supercooling and the corresponding inflation dilute the density n(T ) of
monopoles due to SU(2)a → U(1)a

In a strong first-order phase transition monopoles may be created by bubble collisions
and well-known estimates [Preskill (1984)] lead to

n(Tn)

T 3
n

≳ p(
Tn

CMP
)

3

, (1)

where

▸ p is the probability that the scalar field configuration is topologically non trivial,

▸ C = 0.6/
√
g∗(Tn)

Even for p ≈ 1, setting g∗(Tn) of order 102 (a realistic setup given the existing TAF
SM sectors) the theoretical bound in (1) is amply compatible with the bound coming
from the fact that the mass density of monopoles must not exceed the limit on the
total mass density imposed by the observed Hubble constant and deceleration
parameter. Indeed, the latter bound is around n(T0)/T

3
0 ≲ 10 eV/Mm, where T0 is

today’s temperature, Mm is the monopole mass and Mm ∼ 4πfa/ḡa,
n(T0)/T

3
0 ≲ n(Tn)/T 3

n and the window 108 GeV ≲ fa ≲ 1012 GeV have been used.

https://inspirehep.net/literature/201492


Gravitational waves

Because of supercooling and inflation the main source of GWs are vacuum bubble
collisions [Caprini et al (2015)]

h2ΩGW(f) ≈ 1.29×10−6
(
H(TRH)

β
)

2

(
100

g∗(TRH)
)

1/3 3.8(f/fpeak)
2.8

1 + 2.8(f/fpeak)
3.8

,

where

fpeak ≈ 3.79×102 β

H(TRH)

TRH

1010GeV
(
g∗(TRH)

100
)

1/6

Hz

ΩGW is subject to a big-bang nucleaosynthesis (BBN) bound, which depends on the
effective number of neutrinos Neff

h2Ω̄GW ≡ ∫

fUV

fBBN

df

f
h2ΩGW(f) < 1.3×10−6 Neff − 3.046

0.234

where fBBN ∼ 10−11Hz and fUV is some UV cutoff, which in our case can be
conservatively taken to be ΛG

https://inspirehep.net/literature/1410769


Gravitational waves
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BBN bound on the integrated GW spectrum

Figure: The areas above the colored lines correspond to the (projected) sensitivities for various GW
observatories. The colored region represents the BBN bound on the integrated GW spectrum
Ω̄GWh2, taking as reference value Neff = 3.28, which corresponds to an upper experimental
bound on Neff at 95% c.l..



Conclusions

▸ We have studied the PQ phase transition and the corresponding spectrum of
GWs in a fundamental QCD axion model

▸ All couplings flow to zero in the infinite energy limit (TAF property) and fa is
generated through the CW mechanism, leading to a very predictive model

▸ This model features a very strong first-order phase transition, characterized by a
period of supercooling

▸ We have compared the predicted theoretical GW spectrum with the sensitivities
of several future detectors such as ET, CE, DECIGO, BBO and advanced LIGO,
finding that these experiments will be able to test the fundamental QCD axion
model



Thank you very much for your attention!
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