

QCD at finite chemical potential in and out-of equilibrium

Elena Bratkovskaya

(GSI Darmstadt & Uni. Frankfurt)

Olga Soloveva, Pierre Moreau, Lucia Oliva, Taesoo Song, Wolfgang Cassing

9th International Conference on New Frontiers in Physics (ICNFP 2020)

Kolymbari, Greece, 4-12 September 2020

The ,holy grail' of heavy-ion physics:

The phase diagram of QCD

 Study of the phase transition from hadronic to partonic matter –
 Quark-Gluon-Plasma

- Search for possible critical point
- Search for signatures of chiral symmetry restoration
- Study of the in-medium properties of hadrons at high baryon density and temperature

Our goal: to study the properties of strongly interacting matter created in heavy-ion collisions on a microscopic basis

Theory: QCD + many body theory + microscopic transport theory

Realization: dynamical transport approach → **PHSD**

Theory: lattice QCD data for $\mu_B = 0$ **and finite** $\mu_B > 0$

Deconfinement phase transition from hadron gas to QGP with increasing T and μ_B

IQCD: J. Guenther et al., Nucl. Phys. A 967 (2017) 720

Degrees-of-freedom of QGP

For the microscopic transport description of the system one needs to know all degrees of freedom as well as their properties and interactions!

IQCD gives QGP EoS at finite μ_B

! need to be interpreted in terms of degrees-of-freedom

pQCD:

weakly interacting system

massless quarks and gluons

How to learn about the degrees-offreedom of QGP from HIC? → microscopic transport approaches

→ comparison to HIC experiments

Thermal QCD = QCD at high parton densities:

- **strongly** interacting system
- massive quarks and gluons
- ➔ quasiparticles
- = effective degrees-of-freedom

Degrees-of-freedom: strongly interacting dynamical quasiparticles - quarks and gluons

Theoretical basis :

□ ,resummed' single-particle Green's functions → quark (gluon) propagator (2PI) :

gluon propagator: $\Delta^{-1} = P^2 - \Pi$ & quark propagator $G_q^{-1} = P^2 - \Sigma_q$ gluon self-energy: $\Pi = M_g^2 - i2\gamma_g \omega$ & quark self-energy: $\Sigma_q = M_q^2 - i2\gamma_q \omega$

Properties of the quasiparticles are specified by scalar complex self-energies:

*Re*Σ_q: thermal masses (M_g , M_q); $Im\Sigma_q$: interaction widths (γ_g , γ_q) → spectral functions $\rho_q = -2ImG_q$

- □ introduce an ansatz (HTL; with few parameters) for the (T, μ_B) dependence of masses/widths
- evaluate the QGP thermodynamics in equilibrium using the Kadanoff-Baym theory
- fix DQPM parameters by comparison to the entropy density s, pressure P, energy density ε from DQPM to IQCD at μ_B=0

Parton properties

Modeling of the quark/gluon masses and widths (inspired by HTL calculations)

Masses:

$$M_{q(\bar{q})}^{2}(T,\mu_{B}) = \frac{N_{c}^{2}-1}{8N_{c}}g^{2}(T,\mu_{B})\left(T^{2}+\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$
$$M_{g}^{2}(T,\mu_{B}) = \frac{g^{2}(T,\mu_{B})}{6}\left(\left(N_{c}+\frac{1}{2}N_{f}\right)T^{2}+\frac{N_{c}}{2}\sum_{q}\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$

➔ DQPM :

only one parameter (c = 14.4) + (T, μ_B) - dependent coupling constant has to be determined from lattice results

Widths:

$$\gamma_{q(\bar{q})}(T,\mu_B) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2(T,\mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T,\mu_B)} + 1\right)$$
$$\gamma_g(T,\mu_B) = \frac{1}{3} N_c \frac{g^2(T,\mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T,\mu_B)} + 1\right)$$

Coupling: input: IQCD entropy density as a function of temperature for µ_B
 → Fit to lattice data at µ_B=0 with

$$g^2(s/s_{SB}) = d\left((s/s_{SB})^e - 1\right)^f$$

$$s_{SB}^{QCD} = 19/9\pi^2 T^3$$

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

DQPM at finite (T, μ_q): scaling hypothesis

Scaling hypothesis for the effective temperature T* for N_f = N_c = 3

$$\mu_u = \mu_d = \mu_s = \mu_q$$

$$T^{*2} = T^2 + \frac{\mu_q^2}{\pi^2}$$

Coupling:

$$g(T/T_c(\mu=0)) \longrightarrow g(T^{\star}/T_c(\mu))$$

 Critical temperature T_c(μ_q) : obtained by assuming a constant energy density ε for the system at T=T_c(μ_q), where ε at T_c(μ_q=0)=156 GeV is fixed by IQCD at μ_q=0

$$\frac{T_c(\mu_q)}{T_c(\mu_q=0)} = \sqrt{1-\alpha \ \mu_q^2} \approx 1-\alpha/2 \ \mu_q^2 + \cdots$$

! Consistent with lattice QCD:

IQCD: C. Bonati et al., PRC90 (2014) 114025

$$\frac{T_c(\mu_B)}{T_c} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \cdots$$

IQCD $\kappa = 0.013(2)$

 $\leftarrow \sim \kappa_{DOPM} \approx 0.0122$

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

DQPM: parton properties

➔ Lorentzian spectral function:

D Masses and widths as a function of (T, μ_B)

DQPM thermodynamics at finite (T, μ_q)

Entropy and baryon density in the quasiparticle limit (G. Baym 1998):

$$s^{dqp} = n^{dqp} = -\int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \left[d_g \frac{\partial n_B}{\partial T} \left(\operatorname{Im}(\ln - \Delta^{-1}) + \operatorname{Im} \Pi \operatorname{Re} \Delta \right) \right]$$

$$+ \sum_{q=u,d,s} d_q \frac{\partial n_F(\omega - \mu_q)}{\partial T} \left(\operatorname{Im}(\ln - S_q^{-1}) + \operatorname{Im} \Sigma_q \operatorname{Re} S_q \right)$$

$$+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial T} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right)$$

$$+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial T} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right)$$

$$+ \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right)$$

10

DQPM: Mean-field potential for quasiparticles

Space-like part of energy-momentum tensor $T_{\mu\nu}$ defines the potential energy density:

$$V_p(T, \mu_q) = T_{g-}^{00}(T, \mu_q) + T_{q-}^{00}(T, \mu_q) + T_{\bar{q}-}^{00}(T, \mu_q)$$

space-like gluons space

space-like quarks+antiquarks

→ mean-field scalar potential (1PI) for quarks and gluons (U_q, U_g) vs scalar density ρ_s :

$$U_s(\rho_s) = \frac{dV_p(\rho_s)}{d\rho_s}$$

$$U_q = U_s, \quad U_g \sim 2U_s$$

Quasiparticle potentials (Uq, Ug) are repulsive

→ the force acting on a quasiparticle j:

$$F \sim M_j / E_j \nabla U_s(x) = M_j / E_j \ dU_s / d\rho_s \ \nabla \rho_s(x)$$

 $j = g, q, \bar{q}$ \rightarrow accelerates particles

Partonic interactions: matrix elements

DQPM partonic cross sections → leading order diagrams

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

Differential cross sections

• At lower s: off-shell σ < on -shell σ since $\omega_3 + \omega_4 < \sqrt{s}$

DQPM (T, μ_q): transport properties at finite (T, μ_q)

QGP near equilibrium

Transport coefficients: shear viscosity η

\geq Very weak dependence of shere viscosity on $\mu_{\rm B}$

Lattice QCD: N. Astrakhantsev et al, JHEP 1704 (2017) 101

Transport coefficients: bulk viscosity ζ

Transport coefficients: electric conductivity σ_e/T

$\sigma_0 \rightarrow$ Probe of electric properties of the QGP

Review: H. Berrehrah et al. Int.J.Mod.Phys. E25 (2016) 1642003

QGP: in-equilibrium -> off-equilibrium

Parton-Hadron-String-Dynamics (PHSD)

PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

Dynamics: based on the solution of generalized off-shell transport equations derived from Kadanoff-Baym many-body theory

Initial A+A collisions :

N+N \rightarrow string formation \rightarrow decay to pre-hadrons + leading hadrons

Partonic phase

Partonic phase - QGP:

Given Stage Formation of QGP stage if local $\varepsilon > \varepsilon_{critical}$:

dissolution of pre-hadrons \rightarrow partons

QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and μ_B (crossover)

- Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential
 - Interactions: (quasi-)elastic and inelastic collisions of partons

Hadronic phase

Hadronization to colorless off-shell mesons and baryons: Strict 4-momentum and quantum number conservation

Hadronic phase: hadron-hadron interactions – off-shell HSD

LUND string mod

□ For each cell in PHSD :

In order to extract (T, μ_B) use IQCD relations (up to 4th order) - Taylor series :

(1)

$$\Delta \epsilon / T^4 \approx \frac{1}{2} \left(T \frac{\partial \chi_2^B(T)}{\partial T} + 3\chi_2^B(T) \right) \left(\frac{\mu_B}{T} \right)^2 + \cdots$$

* Use baryon number susceptibilities χ_n from IQCD

• obtain (T, μ_B) by solving the system of coupled equations using ϵ^{PHSD} and n_B^{PHSD} * Done by the Newton-Raphson method

Illustration for a HIC ($\sqrt{s_{NN}} = 19.6$ GeV)

Au + Au $\sqrt{s_{NN}}$ = 19.6 GeV – b = 2 fm – Section view

P. Moreau, PhD Thesis, Frankfurt, 2019

191

Illustration for a HIC ($\sqrt{s_{NN}} = 17$ GeV)

P. Moreau et al., PRC100 (2019) 014911

PHS

Traces of the QGP at finite μ_q in observables in high energy heavy-ion collisions

Results for HICs with PHSD 4.0 and 5.0

- Comparison between three different results:
 - **1)** PHSD 4.0 : only $\sigma(T)$ and $\rho(T)$
 - $\sigma(T)$ parton interaction cross sections $\rho(T)$ – spectral function of partons \rightarrow (masses and widths)

2) PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B = 0)$ and $\rho(T, \mu_B = 0)$

In v.5.0: + angular dependence of diff. partonic cross sections PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B)$ and $\rho(T, \mu_B)$

3)

Results for HICs ($\sqrt{s_{NN}}$ = 200 GeV)

Results for HICs ($\sqrt{s_{NN}} = 17$ GeV)

Results for HICs ($\sqrt{s_{NN}}$ = 7.6 GeV)

Elliptic flow $v_2 (\sqrt{s_{NN}} = 200 \text{ GeV } vs 27 \text{GeV})$

O. Soloveva et al., arXiv:2001.07951, MDPI Particles 2020, 3, 178

Results for v₁ for HICs ($\sqrt{s_{NN}}$ = 27 GeV)

v₁, v₂ analysis:

weak dependence of v_1 , v_2 on μ_B

small influence on v_1 , v_2 of explicit \sqrt{s} -dependence of total partonic cross sections σ + angular dependence of $d\sigma/dcos\theta$ due to the relatively small QGP volume

strong flavor dependence of v₁, v₂

O. Soloveva et al., arXiv:2001.07951, MDPI Particles 2020, 3, 178

- $\Box (T, \mu_B)$ -dependent partonic cross sections and masses/widths of quarks and gluons have been implemented in PHSD
- \Box High- μ_B region is probed at low bombarding energies or high rapidity regions
- But, QGP fraction is small at low bombarding energies:
 → no effects of (T, μ_B)-dependent partonic cross sections and masses/widths seen in 'bulk' observables dN/dy, p_T-spectra

Flow harmonics v₁, v₂ show :

visible sensitivity to the explicit \sqrt{s} -dependence of total partonic cross sections σ + angular dependence of d σ /dcos θ , however, weak dependence on μ_B

Outlook:

- $\succ\,$ More precise EoS at large μ_B
- > Possible 1st order phase transition at even larger μ_B ?!

High- μ_B region of QCD phase diagram \rightarrow challenge for FAIR, NICA, BES RHIC