Physics Prospects of PANDA at FAIR

9th International Conference on New Frontiers in Physics 04.09.2020 - 12.09.2020 Creta

Miriam Kümmel Ruhr-Universität Bochum (Germany) On Behalf of the PANDA Collaboration

GEFÖRDERT VOM

Strong Interaction

Questions PANDA will address

Cross Section

Location of the PANDA experiment

 Extension of the heavy ion research center GSI in Darmstadt (Germany) to the Facility for Antiproton and Ion Research (FAIR)

Construction of FAIR

High Energy Storage Ring

- Circumference: 574 m
- Momentum range: 1.5 - 15 GeV/c
- Stochastic cooling
- Quasi continuous beam

Mode	High Luminosity	High Resolution	Phase 1
$\Delta p/p$ Stored \bar{p} \mathcal{L} [cm ⁻² s ⁻¹]	$\begin{array}{r} 1 \cdot 10^{-4} \\ 10^{11} \\ 2 \cdot 10^{32} \end{array}$	$2 \cdot 10^{-5} \ 10^{10} \ 2 \cdot 10^{31}$	$5\cdot 10^{-5} \\ 10^{10} \\ 2\cdot 10^{31}$

PANDA detector - Full Setup

PANDA detector - Day-1 Setup

Members of the PANDA collaboration

UP Marche Ancona U Basel **IHEP Beijing** U Bochum Abant Izzet Baysal U Golkoy, Bolu U Bonn U Brescia **IFIN-HH Bucharest** AGH UST Cracow **IFJ PAN Cracow** JU Cracow Cracow UT FAIR Darmstadt **GSI** Darmstadt **JINR** Dubna **U** Erlangen **NWU Evanston** U Frankfurt **LNF-INFN** Frascati

FZ Jülich Lund U HI Mainz U Mainz U Münster Novosibirsk State U

U Gießen Giresun U **U** Glasgow **KVI** Groningen Gauhati U, Guwahati **USTC Hefei URZ** Heidelberg Doğuş U, İstanbul Okan U, Istanbul IMP Lanzhou **INFN** Legnaro **RINP Minsk ITEP Moscow** MPEI Moscow **BINP Novosibirsk**

IPN Orsay U Wisconsin, Oshkosh U & INFN Pavia **PNPI St. Petersburg** Wet Boh. U, Pilzen Charles U, Praque Czech TU, Prague **IHFP** Protvino Irfu Saclay **KTH Stockholm** Stockholm U SUT, Nakhon Ratchasima SVNIT Surat-Gujarat S Gujarat U, Surat-Gujarat FSU Tallahassee U & INFN Torino Politecnico di Torino **U** Uppsala SMI Vienna NCBJ Warsaw **U** York

 \odot

U & INFN Genova

Miriam Kümmel (RUB)

Time-like Electromagnetic Form Factors (lepton pair production)

Proton Structure

Even unphysical region of form factors accessible at PANDA via $\overline{p}p \rightarrow e^+e^-\pi^0$

Miriam Kümmel (RUB)

 \bullet

Hadron Spectroscopy @ PANDA

- Large mass coverage: $E_{CM} = (2 5.5) \text{ GeV}$
 - ► Light, strange and charm-rich hadrons
 - From quark/gluon to hadronic degrees of freedom
- High hadronic production rates
 - Strange and charm factory: Discovery by statistics
 - Gluon-rich production:
 Potential for new exotics
- Access to large spectrum of J^{PC} states
 - ▶ Formation of *all* conventional J^{PC} states
 - Large sensitivity for high spin states
- Associated hadron-pair production
 - Access to open-strange/charm hadrons
 - Tagging possibilities
 - Near threshold:
 - Good resolution and low background

Dar

Exploring Hyperons

panda

- What happens when replacing one or two light quarks with a strange quark?
- What are the relevant degrees of freedom?
 - Constituent quark model vs. meson exchange model

PANDA is a hyperon factory

- Lot of data on $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ near threshold recorded mainly by PS185 at LEAR
- No data on $\overline{p}p \to \overline{\Omega}\Omega$ or , $\overline{p}p \to \overline{\Lambda}_c \Lambda_c$

• Only scarce data above 4 GeV/c

Phase-1

$p_{\overline{p}}~({ m GeV}/c)$	Reaction	σ (µb)	Eff (%)	Decay	S/B	Rate (s^{-1})
						at $10^{31} \text{cm}^{-2} \text{s}^{-1}$
1.64	$\overline{p}p o \overline{\Lambda}\Lambda$	64.0 [94]	15.7	$\Lambda \to p\pi^-$	114	44
1.77	$\overline{p}p o \overline{\Sigma}^0 \Lambda$	10.9 [94]	5.3	$\Sigma^0 \to \Lambda \gamma$	$> 11 \ (90\% \ C.L.)$	2.4
6.0	$\overline{p}p o \overline{\Sigma}^0 \Lambda$	20.0 [104]	6.1	$\Sigma^0 \to \Lambda \gamma$	21	5.0
4.6	$\overline{p}p o \overline{\Xi}^+ \Xi^-$	1.0 [92]	8.2	$\Xi^-\to\Lambda\pi^-$	274	0.3
7.0	$\overline{p}p o \overline{\Xi}^+ \Xi^-$	0.3 [92]	7.9	$\Xi^-\to\Lambda\pi^-$	165	0.1
4.6	$\overline{p}p \to \overline{\Lambda}K^+ \Xi^- + c.c$	1	5.4	$\Xi^-\to\Lambda\pi^-$	$> 19 \; (90\% \; { m C.L.})$	0.2
				$\Lambda \to p\pi^-$		

Hyperon Production and Spectroscopy

- Rich set of polarisation variables
- Double strange and charm baryons
- Explore hyperon dynamics above 4 GeV
- Day-1:
 - Reproduce LEAR studies at 1.64 GeV/c
 - Extend at 4 GeV and for
 |S| = 2 hyperons
- Phase-1:
 - Spin correlations in |S| = 1, 2
 - Extend to |S| = 3 and charmed hyperons

p

Hypernuclei

Double Hypernuclear Spectroscopy

Antihyperons in Nuclei

panda

- Antiprotons sensitive to study antihyperon potential in nuclei
- Exploit abundantly produced hyperon-antihyperon pairs near threshold
- Benchmark data to test theoretical concepts to describe dynamics of (anti)hyperons in heavy-ion collisions
- Important first step of the |S| = 2 program of PANDA

Charmonium Spectroscopy

Miriam Kümmel (RUB)

- Below the open charm threshold
 - Potential model description
 matches observations
- Above the open charm threshold
 - Predicted states not found but multiple unexpected discovered!

21

Charmonium Spectroscopy

- Day-1:
 - Exploration of new Z states using direct formation
 - Line-scan proof of principle with narrow conventional charmonia
- Phase-1:
 - Search for high-spin states with hidden charm
 - Line-scan of exotic candidates such as X(3872)

Line-Scan of X(3872)

- Exact line shape reveal the nature of this strikingly narrow state (Γ<1.2 GeV): Is it a virtual or bound state?
- Simulation study for line scan of the "mysterious" X(3872) has been performed
- Analysis performed for $\overline{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^+\pi^-$
- Generated data samples for each scan point
- Extracted X(3872) signal and reconstruct input line shape

Line-Scan Procedure

Line-Scan Performance

- Extract width Γ from fit to energy dependent yield
- Study was performed for various assumptions (cross section, beam resolution, ...)
- Outcome: Depending on operating mode, 3σ significance can be achieved down to Γ = 40 - 80 keV

Glueball Search in $\overline{p}p \rightarrow \phi \phi$

- $\overline{p}p \rightarrow \phi\phi$ cross section exceeds expectation by two orders of magnitude
- Observation of multiple f_2 states with M > 2 GeV in $\pi p \rightarrow \phi \phi n$ and J/ $\psi \rightarrow \gamma \phi \phi$
- Possible sign of intermediate glueball state?
- LQCD predicts tensor glueball state around ~2.4 GeV!

JETSET, Phys.Rev.D57,5370

BESIII, Phys.Rev.D93,112011

Miriam Kümmel (RUB)

Glueball Search in $\overline{p}p \rightarrow \phi\phi$

• Scan above 2.25 GeV: terra incognita

et (1998):^{0++, 2++} and 4++ accessible e scan around 2250 mesons suppressed due oss section **Patialargeretranalysie dte disting Oizh** res ge gluonic component? LOCD: tensor glueball? L=1

physics studies at reduced luminosities

MC generated

Mir

Physics Prospects of PANDA at FAIR

- Cover particle, hadron and nuclear aspects
 - ✦ Quark degrees of freedom: from light to charm
 - ✦ Gluon degrees of freedom: glueballs, hybrids etc.
 - ✦ Meson/baryon degrees of freedom: B-B interaction
- Complementary and competitive
 - ✦ Unique antiproton facility
 - ✦ Versatile detector
- Follow a staged approach
 - Driven by stepwise luminosity/detector upgrades
 - ✦ With a broad program at each phase
- Open for collaboration and new ideas!