Jerome Baudot for the Belle II collaboration

The Belle II Experiment: Status & Prospects

9th International Conference on New Frontiers in Physics (ICNFP 2020) 4-12 September 2020

A super B-factory?

• <u>B factories (e⁺e⁻ collisions at $\sqrt{s} = 10.58$ GeV)</u>

- BaBar (PEPII) & Belle (KEKB) stopped in 2008/2010
- accumulated ~ 1000 fb⁻¹
- very successful analysis techniques
- New inputs
 - ATLAS / CMS \rightarrow Higgs but no non-SM particles
 - LHCb/B-factories intriguing tensions in flavour physics

٠

- Motivations for a super B-factory
 - Complementary search for New Physics / LHC
 - Precision test of Standard Model
 - Direct search for new light particles
 - Hadronic physics

With billions of $B\overline{B}$, $c\overline{c}$, $\tau\overline{\tau}$ pairs

Clean environment (few particles / event)

Known initial state \rightarrow kinematic constraints

Final state always starts with pairs $(q\bar{q}, l^{-}l^{+})$

(C) KEK

⇒ The Belle II physics book <u>PTEP 12 (2019) 123C01</u>

Luminosity frontier

Outline

 \rightarrow The projects

→SuperKEKB & Belle II

→ Status

→Luminosity, data taking & performance results

 \rightarrow First results

→ Prospects

- \rightarrow Next expected results
- →SuperKEKB & Belle II in the next 10 years

SuperKEKB collider

SuperKEKB / Belle II Luminosity status

Machine progress

	KEKB	SuperKEKB	
		2020	Nominal
Energy (GeV) LER/HER	3.5 / 8	4 / 7	
Current (A) LER/HER	1.6/1.2	0.7/0.6	2.8 / 2.0
"Beam size" β _y * (mm)	5.9	0.8	0.3
Instant. Lumi. (cm ⁻² .s ⁻¹)	2.1x10 ³⁴	< 2.4x10 ³⁴	~6x10 ³⁵
First collisions April 2018			
Data taken On-resonance 74 fb	Finc	l goal 50 ab ⁻¹	

- Analysis ready in Summer 2020 exploit ~35 fb⁻¹
- Analysis ready in Winter 2019-20 exploit < 10 fb⁻¹
- Off-resonance 6 fb⁻¹ ($M_{Y(4S)}$ -60MeV)

Belle II detector

Special data taking conditions in 2020

Tracking performance

• Similar technique to evaluate **fake rate**/track: $r_{\text{fake}} = (0.97 \pm 0.34_{\text{stat}} \pm 0.06_{\text{syst}})\%$

Vertexing performances

Particle identification: leptons

- Extract both efficiencies & mis-ID probability from data
- For various leptonID & angular acceptance

leptonID =
$$\frac{\mathcal{L}_{lepton}}{\mathcal{L}_e + \mathcal{L}_\mu + \mathcal{L}_\pi + \mathcal{L}_K + \mathcal{L}_\mu}$$

Particle identification: hadrons

- Using fully reconstructed channels
 - $D^{*+} \rightarrow D^0(K^-\pi^+) \pi^+$
 - Slow π from D^* tags D^0 flavour $\Rightarrow K \& \pi$ identified **in data**

 $K/\pi - \text{ID} = \frac{\mathcal{L}_{K/\pi}}{\mathcal{L}_{\nu} + \mathcal{L}_{\tau}}$

Full Event Interpretation

Dark Matter searches

Time-dependent analysis for B-physics

Semileptonic B-decays

Charmless B-decays

 \Rightarrow BELLE2-CONF-PH-2020-001

results below are updated

Major tool for

• SM precision test: Unitarity Triangle ϕ_2 , isospin sum rules

 Sensitive to NP through loop contributions 700 per 10 MeV $B^0 \rightarrow K^+ \pi^- + \text{c.c.}$ Belle II 2020 (preliminary) $B^+ \rightarrow K^+ \pi^0 + \text{c.c.}$ 600 $\rightarrow K_{c}^{0}\pi^{+} + c.c.$ $L dt = 34.58 \text{ fb}^{-1}$ $\rightarrow K_c^0 \pi^0 + c.c.$ 500 Current focus $\rightarrow \pi^+\pi^-$ + c.c. $\pi^{0} + c.c.$ • Two- to Three- body decays with branching fractions $\sim 10^{-6}$ 400 $K^{\dagger}K^{\dagger}K^{\dagger} + c.c.$ Candidates $\rightarrow K^{\dagger}\pi^{-}\pi^{+} + c.c.$ - Reconstruction efficiency range =15-40% $\rightarrow K^{\dagger}K^{\dagger}\pi^{+}$ + c.c. 300 $\rightarrow \pi^+\pi^-\pi^+$ + c.c. • Challenging $e^+e^- \rightarrow q\bar{q}$ background (continuum) Background 200 - Boosted Decision Tree feed by 39 discriminating variable For flavour-specific channels extract charge asymmetry 100 \rightarrow Probe direct CP-violation - Correction of instrumental-induced asymmetries with data -0.05-0 1 0.05 01 0 $\Delta E = E_{Breco}^* - \frac{\sqrt{s}}{2}$ ΔE [GeV] $\mathcal{A}(B^0 \to K^+ \pi^-) = 0.029 \pm 0.065 (\text{stat}) \pm 0.007 (\text{syst}),$ $\mathcal{A}(B^+ \to \pi^+ \pi^0) = -0.268^{+0.249}_{-0.322}(\text{stat}) \pm 0.123(\text{syst}),$ $\mathcal{A}(B^+ \to K^+ \pi^0) = 0.052^{+0.121}_{-0.119}(\text{stat}) \pm 0.022(\text{syst}),$ $\mathcal{A}(B^+ \to K^+ K^- K^+) = -0.049 \pm 0.063 (\text{stat}) \pm 0.022 (\text{syst}),$ $\mathcal{A}(B^+ \to K^+ \pi^- \pi^+) = -0.063 \pm 0.081 (\text{stat}) \pm 0.023 (\text{syst})$ $\mathcal{A}(B^+ \to K_{\rm S}^0 \pi^+) = -0.072^{+0.109}_{-0.114}(\text{stat}) \pm 0.024(\text{syst}),$ World average compatible

Tau physics

J. Baudot - The Belle II Experiment: status and prospects - ICNFP 2020

Prospects for SuperKEKB schedule overview

Till 2026

- Continuous machine tuning
 - Beam optics ($\beta_y^* \rightarrow 0.5 \text{ mm}$)
- Beam background mitigation (current limiting factor in 2020)
 - New collimators
- Upgrade foreseen in 2026
 - "Long" shutdown
 - New final focussing magnets (QCS)
 - New beam pipe for interact. region
 - Partial RF power upgrade

Nominal luminosity $6 \times 10^{35} \text{ cm}^{-2} \text{.s}^{-1}$ L_{int} = 50 ab⁻¹ after a few years

Prospects for Belle II

Continuous improvement with 2 major steps

2022 shutdown

- On-going DAQ board replacement
- Renew **PXD**: complete two inner layers with same DEPFET technology with new beam-pipe shielding (SR)
- **TOP**-Photomultiplier replacement for longevity against beam-background

2026 shutdown

- SuperKEKB requires long shutdown (see previous slides)
- Opportunity for detector upgrades
 - Highest resilience against beam-background
 - Improve some performances
- Letter of intents prepared this Fall
 - Vertexing / Tracking / PID / Calorimetry / Triggering

In the next 2 years

- Shortly expected analysis results
 - Combined Belle + Belle II measurement for ϕ_3
 - Radiative $b \rightarrow s\gamma$ transitions
 - Inclusive $B^+ \to K^+ v v$
 - Inclusive (FEI tagged) $b \rightarrow s\gamma$
 - Dark sector:
 - Z' to visible, dark Higgsstrahlung, more ALPs search
 - Tau physics:
 - $\tau \rightarrow l \alpha$, lll
- Expected cumulated luminosity
 - March 2021 :140-240 fb⁻¹
 - July 2022: 1 ab⁻¹ (BaBar / Belle L_{int} level)

Conclusion

- SuperKEKB & Belle II have a clear plan to deliver & accumulate $L_{int} \sim 50$ ab⁻¹
- Current analysis performances similar or better than Belle
 - \rightarrow Many measurements delivered & on-going
- Already some competitive results

Real hadronic event

Opportunities for new ideas

Monte-Carlo simulation with $Z' \rightarrow$ invisible

SUPPLEMENTARY SLIDES

Charm physics

Charmonia studies \Rightarrow ICHEP talk "First results from Belle II on exotic and conventional quarkonium"

More results not covered

Charmless B decays

- Channels for φ 2 measurement: $B^+ \rightarrow \phi K^+, B^+ \rightarrow \phi K^{*+}, B^+ \rightarrow \phi K_S^0$
- $B \rightarrow$ charmless BF's and A CP's \Rightarrow BELLE2-CONF-PH-2020-001

<u>Semileptonic decays</u>

- Tagged (Full Event Interpretation) $\bar{B}^0 \rightarrow D^{*+} l^- \bar{\nu}_l \implies \underline{\text{BELLE2-CONF-PH-2020-009}}$
- Hadronic mass moments of $B \rightarrow X_c l \nu_l$

$$\Rightarrow$$
 ICHEP talk "First results on Vub and Vcb with Belle II"

 \Rightarrow BELLE2-CONF-PH-2020-006

- Radiative and electroweak Penguin B decays ⇒ ICHEP talk "Results and Prospects at Belle II "
 - \Rightarrow ICHEP talk "Charm potential at Belle II"

Beam induced background

Various sources

- Single beam backgrounds
 - scale with I, I², 1/beam-size
- Beam-Beam (QED) effects
 - scale with luminosity
- Current main issues
 - TOP MCP-PMT QE decrease with total charge
 - Synchrotron radiations in PXD

- Mitigation measures
- Tuning
 - Injection
 - Beam geometry
- Collimators
- shielding

- At luminosities > 10³⁵ cm⁻².s⁻¹
 - Concern is occupancy
 - especially / inner layers \rightarrow few % range
 - Predictions robust to a factor <5
 - From current data / MC rate ratio
 - Opportunity for detector upgrades
 - Get safer by lowering occupancy
 - Get better performances for physics