

Production and reconstruction of short-lived resonances in heavy-ion collisions at NICA energies using the MPD detector

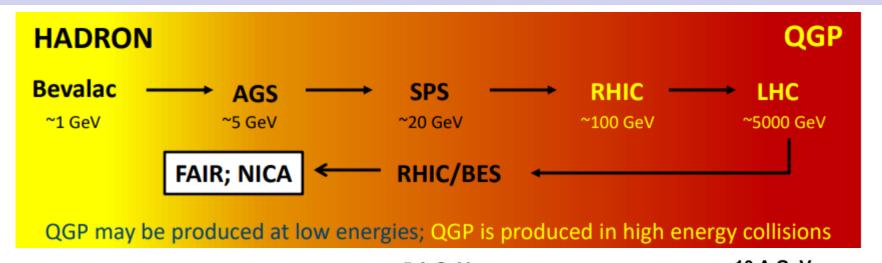
V. Riabov* for the MPD Collaboration

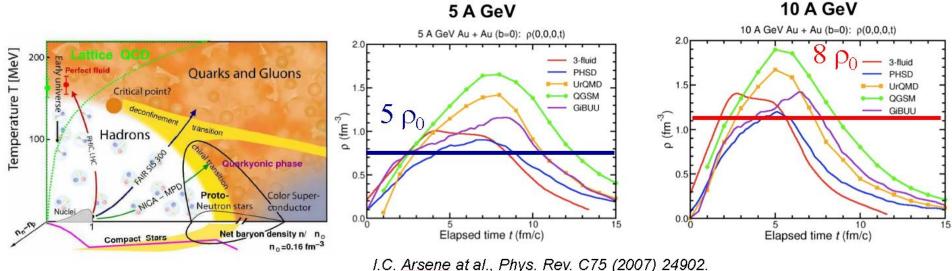
Outline

- **❖** NICA complex
- ❖ Motivation for resonances studies in heavy-ion collisions
- ***** Expectations for resonance properties in heavy-ion collisions at NICA energies
- ❖ Feasibility studies for particle reconstruction at NICA-MPD
- Conclusions

ICNFP 2020

NICA complex




Ring circumference, m	503,04
Number of bunches	22
r.m.s. bunch length, m	0,6
max. int. Energy, Gev/u	11,0
r.m.s. ∆p/p, 10-3	1,6
Luminosity, cm ⁻² s ⁻¹	1x10 ²⁷

- Modernization of existing Nuclotron facility
- * Construction of collider complex to collide:
 - ✓ relativistic ions up to Au, $\sqrt{s_{NN}} = 4-11 \text{ GeV}$
 - ✓ polarized p and d, $\sqrt{s_{NN}} = 27 \text{ GeV (for p)}$
- ❖ Two collider experiments: MPD, SPD
- ❖ One fixed target experiment: BM@N

ICNFP 2020

Heavy-ion collisions at NICA

- Study of the properties of hot and dense QCD matter, phase transition to QGP
- * Regime of the maximum baryon density (phase transition at $\rho_c \sim 5\rho_0$) at NICA
- * Extension of modern heavy-ion programs at RHIC and the LHC to lower energies

MPD experiment, construction progress

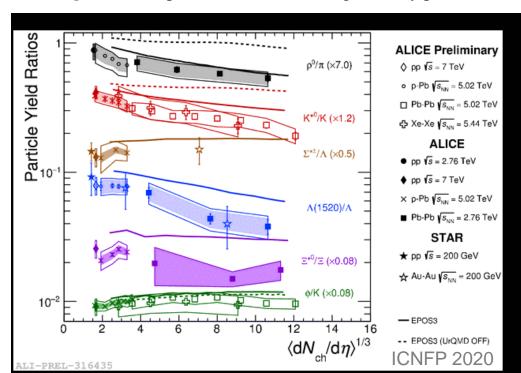
ICNFP 2020

Resonances in heavy-ion collisions

ρ(770)	K*(892) ⁰	K*(892)+	\(\phi(1020) \)	$\Sigma(1385)^{\pm}$	Λ(1520)	$\Xi(1530)$
$\frac{u\overline{u} + d\overline{d}}{\sqrt{2}}$	$d\overline{s}$	us	SS	uus dds	uds	uss

Particle	Mass (MeV/ c^2)	Width (MeV/ c^2)	Decay	BR (%)
ρ^0	770	150	π+π-	100
K*±	892	50.3	π±K,	33.3
$K^{\star 0}$	896	47.3	πK ⁺	66.7
ф	1019	4.27	K+K-	48.9
Σ^{\star_+}	1383	36	π+Λ	87
Σ*-	1387	39.4	$\pi \Lambda$	87
Λ (1520)	1520	15.7	K-p	22.5
Ξ*0	1532	9.1	π+Ξ·	66.7

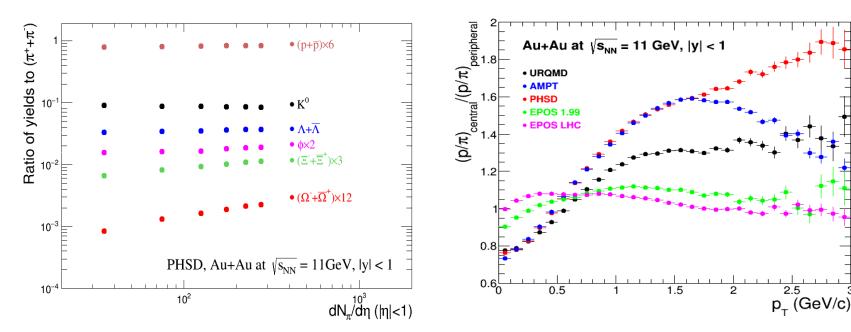
- ❖ Wide variety of resonances in the PDG, most popular are listed on the top
- ❖ Vacuum properties of these particles are well defined (m, cτ, BR etc.)
- ❖ Copiously produced in heavy-ion collisions at ~ GeV energies
 - → relatively easy to measure in hadronic decay channels
- Probe reaction dynamics and particle production mechanisms vs. system size and $\sqrt{s_{NN}}$:
 - ✓ hadron chemistry and strangeness production, ϕ is one of the key probes
 - ✓ reaction dynamics and shape of particle p_T spectra, p/K^* , p/ϕ vs. p_T
 - ✓ lifetime and properties of the hadronic phase
 - **√** ...
 - ✓ flow, comparison with e^+e^- measurements, jet quenching, background for other probes etc.


Hadronic phase and medium modifications

increasing lifetime						
	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	王(1530)	φ(1020)
cτ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2
σ _{rescatt}	$\sigma_\pi \sigma_\pi$	$\sigma_\pi \sigma_K$	$\sigma_\pi\sigma_\Lambda$	$\sigma_K \sigma_p$	σπσΞ	$\sigma_K \sigma_K$

- \clubsuit Resonances have small lifetimes of $c\tau \sim 1$ 45 fm, part of them decays in the fireball
- * Reconstructed resonance yields in heavy ion collisions are defined by:
 - ✓ resonance yields at chemical freeze-out
 - ✓ hadronic processes between chemical and kinetic freeze-outs:

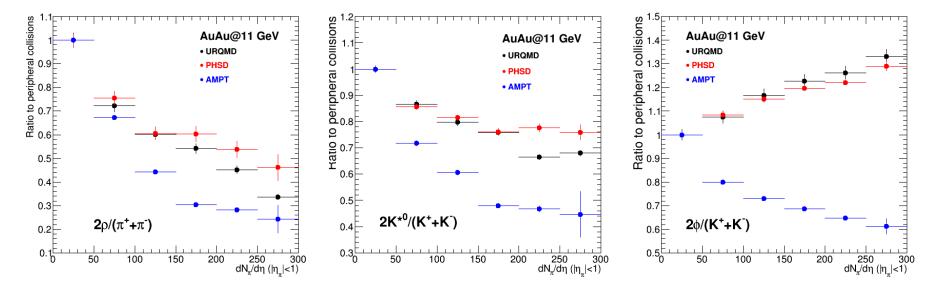
rescattering: daughter particles undergo elastic scattering or pseudo-elastic scattering through a different resonance \rightarrow parent particle is not reconstructed \rightarrow loss of signal


regeneration: pseudo-elastic scattering of decay products ($\pi K \to K^{*0}$, $KK \to \phi$ etc.) \to increased yields

- ❖ SPS/RHIC/LHC results for resonance yields support the existence of a hadronic phase that lives long enough to cause a significant reduction of the reconstructed yields of short lived resonances
- Lower limit for the lifetime of the hadronic phase, $\tau \sim 10$ fm/c

Model predictions for resonances at NICA

- ❖ UrQMD, PHSD, AMPT, EPOS ...
- **❖** General predictions:
 - ✓ resonances are still copiously produced and can be used to study physics of heavy-ion collisions
 - ✓ models predict enhanced production of particles with strangeness and different interplay of mechanisms responsible for shaping of the particle p_⊤ spectra.

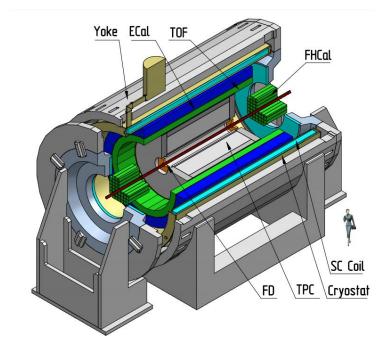


❖ Eventually, model predictions (integrated yields, <p_T>, particle ratios etc.) should be compared to data to differentiate different model assumptions

ICNFP 2020

Hadronic phase and particle ratios

- ❖ Models with hadronic cascades (UrQMD, PHSD, AMPT) → properties of hadronic phase
- ❖ Models predict centrality dependent ρ/π , K*/K, ϕ /K and Λ*/Λ, Σ*/Λ, Ξ*/Ξ ratios in AuAu@11
- * Ratios are suppressed going from peripheral to central collisions for resonances with small cτ
- ❖ Modifications occur at low momentum as expected for hadronic phase effects

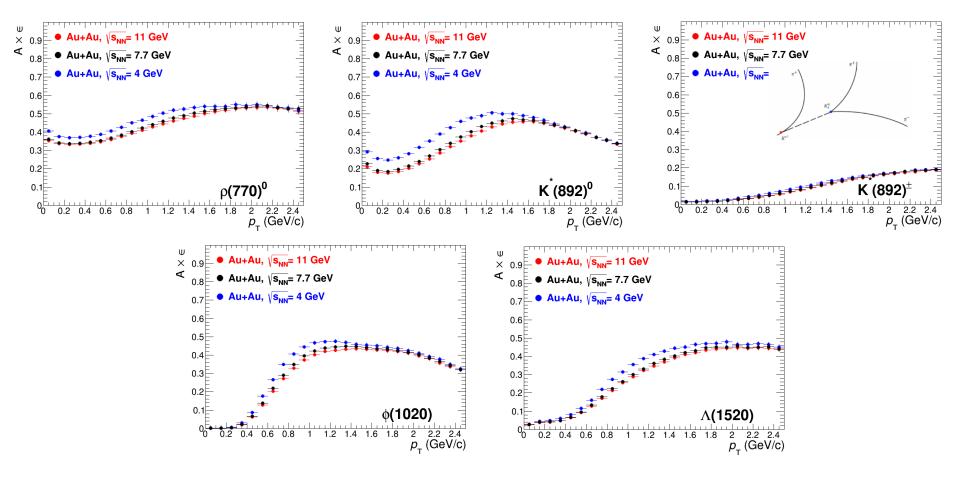


- ❖ Models predict yield modifications qualitatively similar to those obtained at SPS/RHIC/LHC:
 - ✓ lifetime and density of the hadronic phase are high enough
 - ✓ modification of particle properties in the hadronic phase should be taken into account when model predictions for different observables are compared to data
 - ✓ study of short-lived resonances is a unique tool to tune hadronic phase simulations

MPD experiment, Phase 1

- **❖** Phase 1: **TPC, TOF, FFD, FCAL** u **ECAL**
- **Startup in 2021-2022**
- ❖ Simulate AuAu@4-11 collisions using different event generators
- ❖ Propagate particles through the MPD, 'mpdroot':
 - ✓ Geant (v.3 or v.4) particle transport
 - ✓ realistic simulation of subsystem response (raw signals)
 - ✓ track/signal reconstruction and pattern recognition
- **A** Basic event and track selections:
 - ✓ event selection: $|Z_{vrtx}| < 50$ cm
 - ✓ track selection:
 - number of TPC hits > 24
 - $|\eta| < 1.0$
 - $|DCA \text{ to } PV| < 2\sigma \text{ for primary tracks}$
 - V0 topology cuts for weakly decaying secondaries
 - $p_T > 50-100 \text{ MeV/c}$
 - TPC-TOF combined $\pi/K/p$ PID
 - ✓ combinatorial background:
 - event mixing ($|\Delta_{Zvrtx}| < 2$ cm, $|\Delta_{Mult}| < 20$, $N_{ev} = 10$)

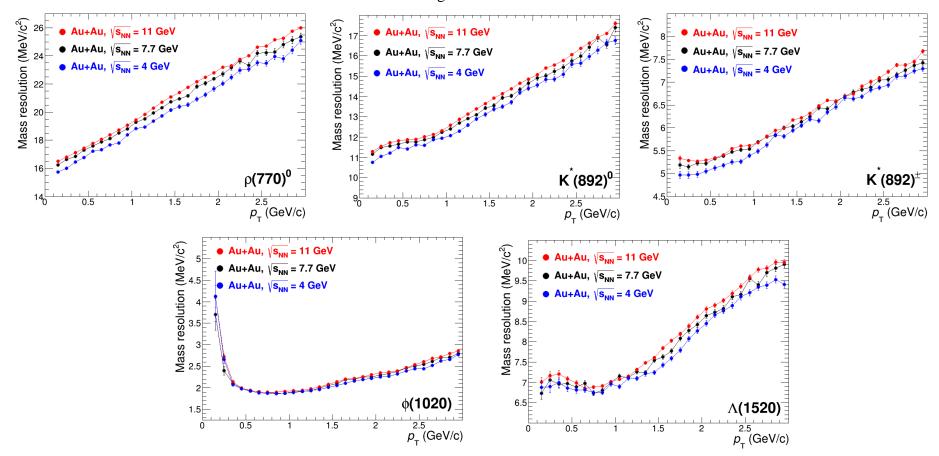
TPC: $|\Delta \varphi| < 2\pi$, $|\eta| \le 1.6$


TOF, EMC: $|\Delta \varphi| < 2\pi$, $|\eta| \le 1.4$

FFD: $|\Delta \varphi| < 2\pi$, 2.9 < $|\eta| < 3.3$

FHCAL: $|\Delta \varphi| < 2\pi$, $2 < |\eta| < 5$

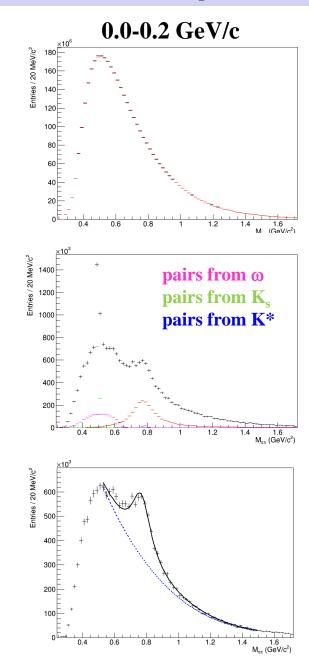
Reconstruction efficiency: $\rho(770)$, K*(892), $\phi(1020)$, $\Lambda(1520)$

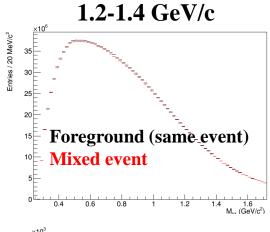

❖ Typical reconstruction efficiencies (A $x \in$) in AuAu @ 4, 7.7 and 11 GeV

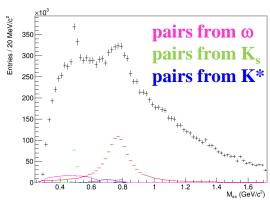
- * Reasonable efficiencies in the wide p_T range, |y| < 1
- Modest multiplicity (or $\sqrt{s_{NN}}$) dependence

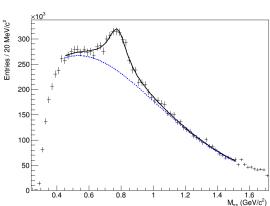
Mass resolution: $\rho(770)$, K*(892), $\phi(1020)$, $\Lambda(1520)$

 \bullet Detector mass resolution (m_{reconstructed} – m_{generated}) in AuAu @ 4, 7.7 and 11 GeV

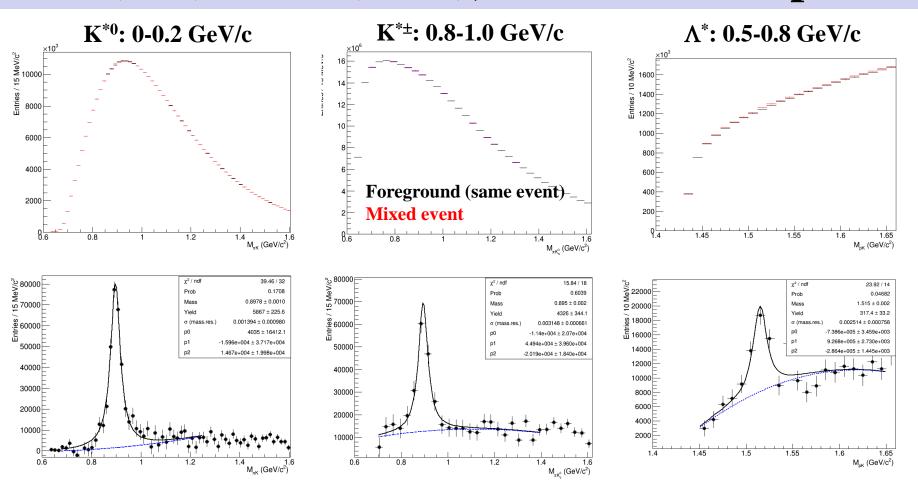

- ❖ Not outstanding but acceptable mass resolution
- \diamond Reasonable efficiencies in the wide p_T range
- Modest multiplicity (or $\sqrt{s_{NN}}$) dependence

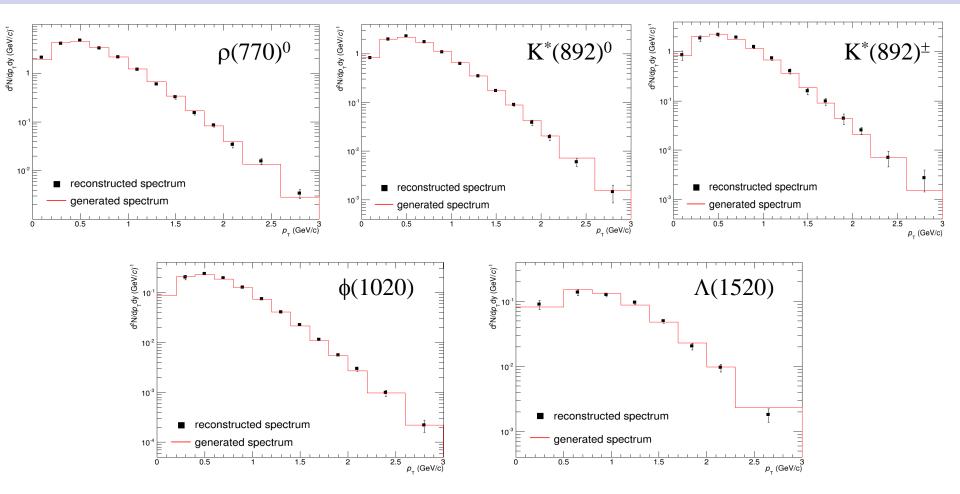

\$\phi(1020)\$, reconstructed peaks



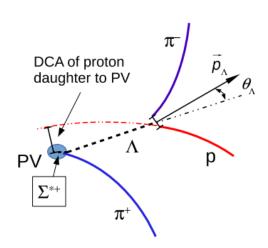

- ❖ 10M simulated AuAu@11(UrQMD v.3.4)
- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- ❖ Distribution is fit to Voigtian function + constant (p0)
- Signal can be reconstructed at $p_T > 0.2 \text{ GeV/c}$, ~ 90% of the total yield in this range for ϕ
- ❖ High-p_T reach is limited by available statistics

$\rho(770)$, reconstructed peaks

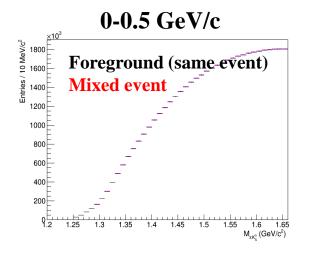


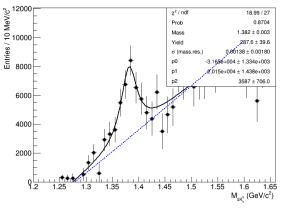

- ❖ 10M simulated AuAu@11 (UrQMD v.3.4)
- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- * "Known" contributions from K_s, ω, K* are subtracted (need to be measured in advance); f0, f2 are missing in simulation; similar to ALICE analysis, Phys.Rev. C99 (2019) no.6, 064901
- Distribution is fit to BW function
 + pol2, mass resolution is not
 important
- Signal can be reconstructed from zero momentum
- ❖ High-p_T reach is limited by available statistics

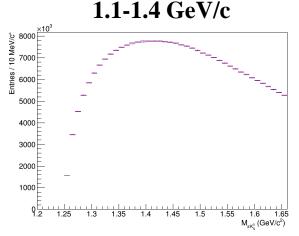
$K^*(892)$ and $\Lambda(1520)$, reconstructed peaks

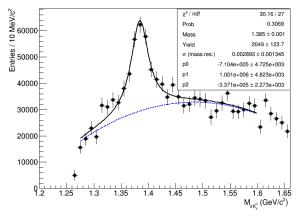

- ❖ 10M simulated AuAu@11(UrQMD v.3.4)
- ❖ Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Fit to Voigtian + pol2
- Signal can be reconstructed from zero momentum
- ❖ High-p_T reach is limited by available statistics

MC closure tests: ρ , $K^{*0,\pm}$, ϕ , Λ^*

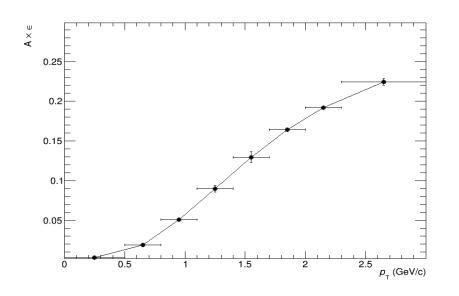

- ❖ 10M simulated AuAu@11(UrQMD v.3.4)
- Full chain reconstruction at |y| < 1.0
- * Reconstructed spectra matches the generated ones within uncertainties
- **❖** Expected p_T range of measurements: 0-3GeV/c

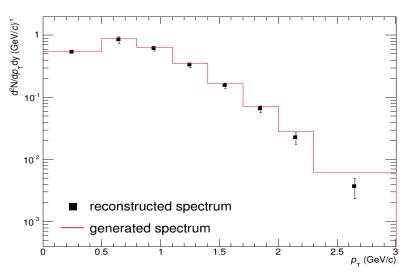

Feasibility study, $\Sigma(1385)^{\pm}$

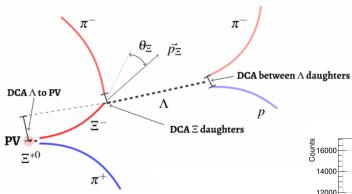


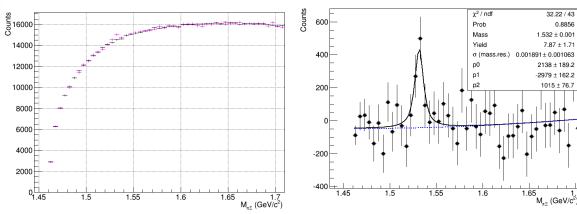

- ❖ 10M simulated AuAu@11(UrQMD v.3.4)
- Mixed-event combinatorial background is scaled to foreground at high mass and subtracted
- Σ^* peak is fit to Voigtian + pol2
- Signal can be reconstructed starting from zero momentum
- High-p_T reach is limited by available statistics

- Decay chain includes weak decay of $\Lambda \rightarrow V0$ vertex





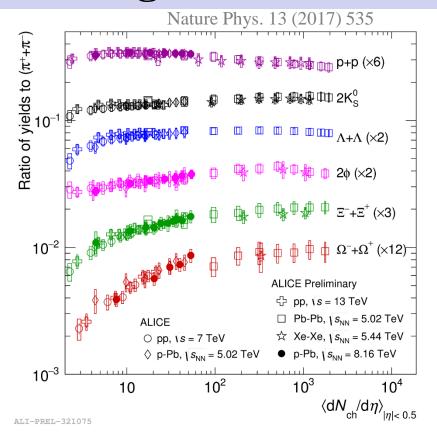

MC closure test: $\Sigma(1385)^{\pm}$

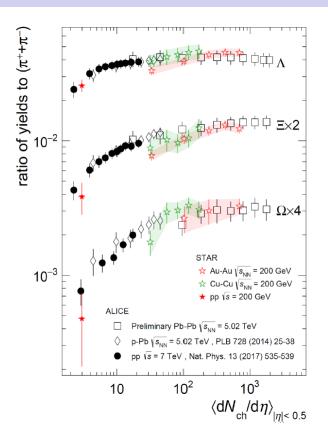

- Full chain reconstruction at |y| < 1.0
- * Reconstructed spectrum matches the generated one within uncertainties
- Measurements are possible at $p_T > 0 \text{ GeV/c}$

Feasibility study, $\Xi(1530)^0$

- \diamond Decay chain includes weak decay of Λ and cascade

$$p_T > 1.0 \text{ GeV/c}$$

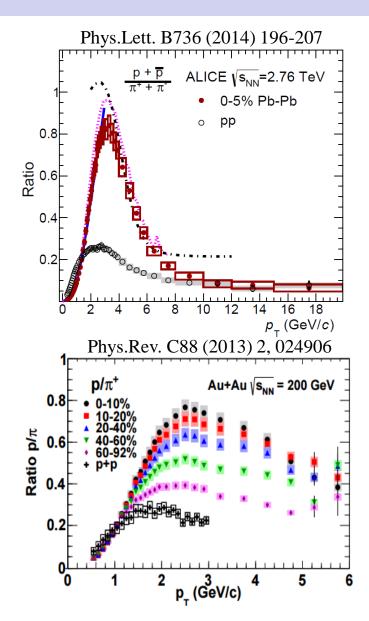

- Hint of a signal at $p_T > 1 \text{ GeV/c}$
- ❖ Statistics hungry analysis → embedded simulations and large data samples ...


Summary

- ✓ Resonance study is an important part of the MPD physical program
- ✓ Resonances are expected to be sensitive to properties of the partonic/hadronic medium produced in heavy-ion collisions at NICA energies
- ✓ Resonances can be reconstructed/measured using the MPD detector from zero momentum to ~ 3 GeV/c with 10⁷ minimum bias events sampled
- ✓ About 10⁸ events is needed for multiplicity dependent study → within expectations for year-1 running

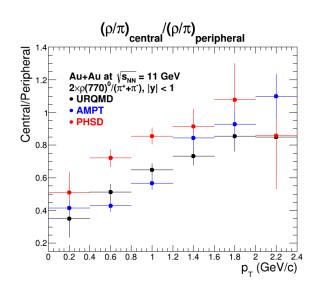
BACKUP

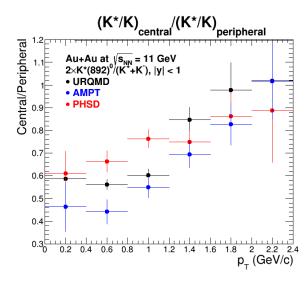
Strangeness enhancement in pp, p-A and A-A

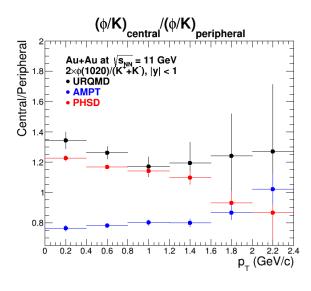


- Observed in heavy-ion collisions at AGS, SPS, RHIC and LHC;
- ❖ For the first time observed in pp and p-A collisions by ALICE at the LHC
- Observed as for ground-state hadrons as for resonances $(\phi/\pi, \Sigma^*/\pi, \Xi^*/\pi)$
- Strangeness production in A-A collisions is reproduced by statistical hadronization models. Canonical suppression models reproduce results in pp and p-A except for φ

 \diamond ϕ with hidden strangeness is not subject to canonical suppression $\rightarrow \phi$ is a key observable !!!


Hadronization at intermediate momenta


- ***** Baryon puzzle increased baryon-to-meson (p/ π , Λ/K_s^0 , Λ_c^+/D) ratios in heavy-ion collisions at RHIC and the LHC
- ❖ Driving force of enhancement is not yet fully understood:
 - ✓ particle mass (hydrodynamic flow)?
 - ✓ quark count (baryons vs. mesons)?
- \diamond ϕ and K^{*0} are well suited for tests as mesons with masses very close to that of a proton:
 - \checkmark $\Delta m_{\phi} \sim 80 \text{ MeV}/c^2$, $\Delta m_{K^*0} \sim -45 \text{ MeV}/c^2$



Hadronic phase and particle ratios

❖ Modifications occur at low momentum as expected for hadronic phase effects

- ❖ Models predict yield modifications for resonances qualitatively similar to those observed at higher collision energies:
 - ✓ lifetime and density of the hadronic phase are high enough
 - ✓ modification of particle properties in the hadronic phase should be taken into account when model predictions for different observables are compared to data
 - ✓ study of short-lived resonances is a unique tool to tune hadronic phase simulations

$\rho(770)$, signal extraction – practice tests

Phys.Rev. C99 (2019) no.6, 064901

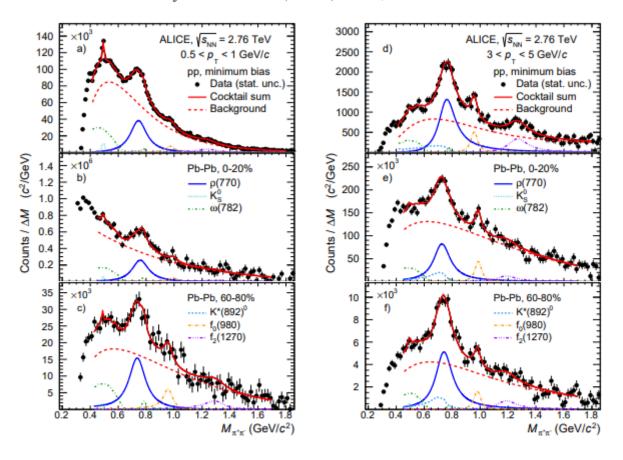


Fig. 1: (Color online) Invariant mass distributions for $\pi^+\pi^-$ pairs after subtraction of the like-sign background. Plots on the left and right are for the low and high transverse momentum intervals, respectively. Examples are shown for minimum bias pp, 0–20% and 60–80% central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. Solid red curves represent fits to the function described in the text. Colored dashed curves represent different components of the fit function, which includes a smooth remaining background as well as contributions from K_S^0 , ρ^0 , $\omega(782)$, $K^*(892)^0$, $f_0(980)$ and $f_2(1270)$. See text for details.