

DAMIC results on WIMP search with 11 kg day

Romain Gaïor for the DAMIC collaboration ICNFP2020 9 september 2020

CONTEXT - MOTIVATION

Dark Matter: astrophysical / cosmological probes (rotation curves, CMB, BBN)
 -> ~25% of the Energy Matter content of the universe

Dark Matter: The evidence from astronomy, astrophysics and cosmology, M. ROOS arXiv:1001.031, An Introduction to Particle Dark Matter. Profumo et al arXiv:1910.05610

WIMP (Weakly Interacting Massive Particle): considered as the favourite candidate
 –> nominal model m ~ 100GeV

- Light WIMPs
- CDMS Si excess CDMS collab, arXiv:1304.4279

DARK MATTER IN CCD (DAMIC)

- Ionisation threshold ~3.7 eV
- low readout noise ~1.6 e-(E_{threshold} = 50-60 eVee)

High granularity (15µm)

225-338, Jan.. 2003

- PID -> Bkg discrimination
- Depth information (diffusion)
- Thick fully depleted CCD (675µm)

 IEEE Transactions On Electron Devices, VOL. 50, No. 1,

DAMIC AT SNOLAB

- SNOLAB (Canada): 2km deep in a mine (0.3 muon / m² / day!)
- Physics goal: WIMP search (this presentation: arXiv:2007.15622)

Dark sector (Phys. Rev. Lett. 123, 181802)

Silicon radioactive contamination (arXiv:1506.02562, JINST 10 (2016) no.08 P08014)

WIMP SEARCH METHODOLOGY

1
Acquire and select data

Build a background model

2

Compare data /
simulation
—> Signal or
limit (or both...)

Results on low-mass weakly interacting massive particles from a 11 kg d target exposure of DAMIC at SNOLAB

A. Aguilar-Arevalo, D. Amidei, D. Baxter, G. Cancelo, B.A. Cervantes Vergara, A.E. Chavarria, J.C. D'Olivo, J. Estrada, F. Favela-Perez, R. Gaïor, Y. Guardincerri, E.W. Hoppe, T.W. Hossbach, B. Kilminster, Lawson, S.J. Lee, A. Letessier-Selvon, A. Matalon, P. Mitra, C.T. Overman, A. Piers, P. Privitera, K. Ramanathan, J. Da Rocha, Y. Sarkis, M. Settimo, R. Smida, R. Thomas, J. Tiffenberg, M. Traina, R. Vilar, and A.L. Virto (DAMIC Collaboration)

arXiv:2007.15622

Acquire and select data

DATA ACQUISITION

DATA SELECTION

- 1x100 images better energy resolution
- stringent masking
 ~7% of data removed
- leakage current exposure duration and image selection
- → 11 kg day of exposure
- cluster search
 Gaussian vs constant likelihood
- selection on ΔLL
- efficiency
 50% at ~80 eV

2

Build a background model

GEANT4 SIMULATION

Simulations features

- CCD structure
- Bulk and surface simulation
- G4 Livermore physics list

Expected contributions:

- low energy gamma
- low energy beta
- neutron —> negligible

Main Contaminant

- Primordial nuclide ²³⁸U, ²³²Th
 ->²¹⁰Pb
- Copper activation
- CCD specific contributions
 ³²Si, ³²P, ²²Na, ³H

DETECTOR RESPONSE SIMULATION + STANDARD ANALYSIS

Saturation + noise

→ Templates of clusters in Energy Depth plane

BACKGROUND ESTIMATION FROM DATA

- Set the Energy range: [6 20] keV
- Collect the G4 simulated template for volume / contaminant
- Adjust with a 2D [E vs Depth] binned likelihood template fit between data and simulation
 - constrained by assays and coincidence analysis

measurement / upper limits on actvities

Part	U-238	Ra-226	Pb-210	Th-232	K-40
$\overline{\text{CCD}}$	< 0.53	< 0.43	<33*	< 0.4	< 0.04
Kapton cable	5000 ± 420	420 ± 490	420*	280 ± 40	2480 ± 170
Copper	<10.7	<11.2	2350 ± 720	< 3.5	< 2.7
Module Screws	1400 ± 3800	<138	$2350\pm720^\dagger$	200 ± 140	2400 ± 1300
Ancient lead shield	< 2.0	<22.5	2850^{\ddagger}	0.2^{\ddagger}	< 0.5
Outer lead shield	<1.1	<17.6	1560000 ± 430000	< 0.4	<19

BACKGROUND STUDY RESULTS

- Sensitive to structure of the CCD
- Important guide for next generation CCD based experiment

PARTIAL CHARGE COLLECTION

- SIMS measurement of the CCD show a diffusion of P donor on a few microns in the bulk region
- Leads to effects at low energies
- Performed systematic studies on this effect (shift, temperature)

ENERGY PROJECTION

Compare data/background model

BACKGROUND MODEL

BACKGROUND MODEL + DATA

BACKGROUND MODEL + DATA

Extended likelihood function for WIMP spectrum

$$\ln \mathcal{L}(s, b_{sys}, M, c_{pcc}, \alpha_{pcc}) = -(s + b_{sys}) + \sum_{i=1}^{N} \ln \left(sf_s(E_i, \sigma_{xi}|M) + b_{sys}f_{b_{sys}}(E_i, \sigma_{xi}|c_{pcc}, \alpha_{pcc}) \right)$$

We actually do it for a generic bulk excess...

$$f_{S}$$
 $f_{b}(E|\alpha_{s},\sigma) = \frac{N}{\alpha_{s}} \exp(-E/\alpha_{s}) \exp(\sigma^{2}/2\alpha_{s}^{2}) \operatorname{erfc}\left(\frac{\sigma/\alpha_{s}-E}{\sqrt{2}\sigma}\right)$

BACKGROUND MODEL + DATA + EXCESS

- We report an excess not interpreted as DM
- Additional checks are needed

EXCESS

Comparing a Back and Bulk Component [Pixels] 0.8 0.6 Generic Bulk Decay, $\alpha = 0.067 \text{ keV}_{\odot}$ 0.4 0.2 Generic Back Decay, $\alpha = 0.180 \text{ keV}_{ee}^{1/2}$ 0.6 0.7 Energy [keV_{ee}] 0.1 0.2 0.4 0.3 0.5

- best fit finds ~17 events in excess with an expo. decay of 67eV
- back and bulk excess are not degenerate

SO WHAT IS IT THEN ???

- missing component in the background model
- detector effect on the front side of the CCD
- Silicon new physics
- Dark Matter interaction
- •

WIMP LIMITS

- We report a limit on WIMP nucleon SI interaction
- Significant fraction of the CDMS Si excluded

FUTURE

DAMIC at SNOLAB continues...

- a few Skipper CCDs (sub e- resolution) will be installed
 lower threshold
- threshold effect or new bkg component or new physics...

DAMIC-M

- 1kg scale detector at Modane is being developed
 - First demonstrator with science results ~2021
 - Full experiment ~ 2022/2023
- see Ben Kilminster (tuesday 11h25 room 3)

