

Rydberg positronium for pulsed antihydrogen production

Dr. Ruggero Caravita¹ on behalf of the AEgIS collaboration

¹ TIFPA - INFN, Trento, Italy

Galileo's Pisa leaning tower thought experiment

free-fall is independent of body masses

$$\begin{cases} \mathbf{F} = m_i \mathbf{a} \\ \mathbf{F}_{\mathbf{g}} = m_g \mathbf{g} \end{cases} \xrightarrow{UFF} m_i = m_g \end{cases}$$

Einstein's Equivalence Principle

The result of any local non-gravitational experiment is independent from the velocity of an observer in free-fall and his position and time in the universe

> EP = UFF (universality of the free fall) + LLI (local Lorentz invariance) + LPI (local position invariance)

Tests of the Equivalence Principle

With normal matter

- Eötvös-like torsion balances (2 part per 10¹³)
- Lunar laser ranging (3 part per 10⁴)
- Cold atoms interferometry (3 part per 10⁸)

With antimatter?

- Attempts with charged positrons ~ 1967
- Attempts with charged antiprotons \sim 1985
- Some indirect limits \sim 1987 2000
- Limit on antihydrogen by ALPHA collaboration, 2014

any deviation from the expected matter/antimatter equality would be an indication of new physics

Clifford M. Will, Theory and experiment in gravitational physics (1993)

The AEgIS collaboration

University of

Rerge

CERN

University of

Genova

University of

Brescia

Antimatter Experiment: Gravity, Interferometry, Spectroscopy

- CERN-based collaboration of ~50 collaborators and 16 institutes
- Aims to perform the first direct free-fall ٠ measurement of gravity on antihydrogen

LINAC.

LEIR

ALICE

HiRadMat 2011

> n-ToF 2001

TI2

Detection method: the moiré deflectometer

- Near-field diffraction of light as a tool for gratings alignment in all three spatial directions
- Atoms' time-of-flight knowledge required

$$\Delta y = \frac{F_{\parallel}}{m} \tau^2 \longrightarrow F_{min} \approx 5 \cdot 10^{-16} \,\mathrm{N}$$

First milestone: pulsed antihydrogen production

Conceptual experimental scheme

- 1) Preparation of a cold antiproton plasma in a Penning trap
- Pulsed production of cold Ps from e⁺ conversion in mesoporous silica
- Two-step laser excitation of Ps to Rydberg levels
- 4) Charge-exchange with antiprotons

$$Ps^* + \bar{p} \longrightarrow \bar{H}^* + e^-$$

5) Detection of the annihilation products after collision with the trap walls

Doser M. et al., Class. Quantum Grav. 29, 184009 (2012).

The AEgIS experimental complex

The AEgIS experimental complex

Overview of an antihydrogen production cycle

Tietje I. et al., J. Phys.: Conf. Ser. 1612 (2020) 012025

Antiproton capture in the 4.5T catching traps

Eur. Phys. J. D (2018) 72: 76 https://doi.org/10.1140/epjd/e2018-80617-x

Plasma transfer in the 1T production trap

Positron accumulation

-0.2

-0.25

-0.3

200

220

240

- Nanosecond extraction at 300 eV with magnetic t.line
- Acceleration with pulsed 'kicker' electrode to 4.6 keV
- Steering with horizontal/vertical t.line coils

320 ns

500 trap spills

300

280

260

accumulation

and

launch

Ps formation and detection

AEgIS laser system

Full solid-state YAG-based custom-built system

Cialdi S. Boscolo I. Castelli F. Villa F. Ferrari G. and Giammarchi M. G., *NIM B 269 (2011) 1527-1533* Caravita R., *Laser apparatus for exciting Positronium*

Ps

laser excitation to n

ω

ICFNP 2020, Crete, September 4-12 2020

Ps excitation to n = 3: photodissociation MCP detector

Detection of photo-e⁺ with MCP+P47/CMOS

- High-res. imaging capability in the transverse plane
- Small accelerating E field below the target (20 V/cm)
- Front face bias to -180V (maximize e+ efficiency)

 $\text{Res}_{(\text{FWHM})} = 88 \pm 5 \ \mu\text{m}$

Nuclear Inst. and Methods in Physics Research B 457 (2019) 44-48

Ps excitation to n = 3: measurement of Ps Doppler distribution

Doppler distribution in the laser propag. axis

- Ps 1³S-3³P spectroscopy via UV wavelength scan
- Doppler selection from UV laser bandwidth (120 GHz)

 $\sigma_{\rm D} = (10.3 \pm 0.3) \cdot 10^4 \text{ m s}^{-1}$

Antonello M. et al., Phys. Rev. A 102 (2020) 013101

Ps

laser excitation to n

ω

Ps excitation to n = 3: measurement of Ps velocity distribution

Velocity distribution in the target normal direction (TOF with light)

- UV laser set at constant wavelength (205.045 nm)
- Ps cloud evolution varying the UV laser pulse delay time in steps of 1 ns

Mariazzi S. et al., Phys. Rev. Lett. **104** (2010) 243401 Antonello M. et al., Phys. Rev. A **102** (2020) 013101

Ps Rydberg excitation: self-ionization disappearance detection

Rydberg Ps partly ionizes in strong B field

• Motional Stark electric field \sim classical ionization limit

$$F = vB\sin\theta \qquad F_{\text{class}}^* = 1.3 \cdot 10^6 \frac{1}{9n^4} \,\text{kV}\,\text{cm}^{-1}$$

- Free e⁺ from spontaneous dissociation of Rydberg Ps
- Disappearance diagnostics: ion. signal vs. IR

~70% (surviving) Ps conveyed to n = 17

Antonello M. et al., Phys. Rev. A **102** (2020) 013101

Ps

Rydberg

excitation

Antihydrogen production cross-section

Typical experimental parameters

• Stored plasma average density

 $n_{ar{p}} pprox 10^{13} \, \mathrm{m}^{-3}$ talk of I. Tietje

Rydberg Ps entering the antiproton trap

 $N_{Ps^*} \approx 10^3 \text{ cycle}^{-1}$

Cross-section from CTMC calculation

$$\sigma(n = 17, E_{cm} = 0.1 \,\mathrm{eV}) \approx 10^{-11} \,\mathrm{cm}^2$$

r

• Average Ps trajectories angle $\theta_{Ps} \approx \pi/3$

$$N_{\bar{H}} = \int \sigma n_{\bar{p}} N_{Ps} v_{rel} dt \approx 10^{-2} \text{ cycle}^{-1}$$

Krasnicky D., Caravita R., Canali C., Testera G., PRA **94** (2016) 022714 Caravita R., Ph. D. thesis, Università degli Studi di Genova (2017)

search for rare annihilation events!

Antihydrogen detection – scintillator array for MIP detection

Hbar detection

Scintillator array for MIP detection

- 8 x EJ-200 scintillator slabs
- Scintillators are read at both ends with photomultipliers
- Each PMT is digitized at 250 MHz
- software coincidence between the signals is performed

Antihydrogen detection – SciFi tracker

Scintillating fiber tracker (FACT)

- Charged particle tracker operating at 4K
- 800 Kuraray SCF78 scintillating fibers
- Readout by MPPC + fast distriminator
- Discriminated and readout by FPGA

tracking capability (res ~ mm) in the z direction

Conclusions

AEgIS: probing the weak equivalence principle with antimatter

- 1. Proof-of-concept pulsed antihydrogen source
- 2. Pulsed beam of antihydrogen
- 3. First free-fall tests using a moiré deflectometer

Achievements

- Development of antiproton and positron sources
- Demonstration of all individual steps necessary the first pulsed Hbar source
- Results of the first proof-of-concept experiments are under review.

BACKUP

Antihydrogen detection – analysis strategy

