

CMS Highlights

Rosamaria Venditti (INFN and University of Bari)

On behalf of the CMS Collaboration

ICNFP 2020- 9th International Conference on New Frontiers in Physics

Roadmap from past to future

We are here! Just 4 months delay on the LHC schedule for the COVID emergency

The CMS Apparatus: status and activities

• The CMS detector Phase-1 upgrades started during the first Long Shutdown (2014) and concluded during the Run 2 end of the year technical stops (2019)

Silicon Tracker

 Pixel upgraded in 2017 (4th layer) replaced some electronics in 2018
 Microstrips running colder -15°C (2015-2017) -20°C (2018)
 Ongoing: replace barrel layer 1 Replace DC-DC converters

Muon Detectors

- Drift tubes VME $\rightarrow \mu TCA$ readout in 2018
- New RPC stations
- GEM slice test (GE1/1) in 2018

Ongoing: Installing GE1/1, Upgrade CSC FEE, Shielding against neutron background

Electromagnetic Calorimeter new DAQ links in 2018

Trigger System (done by 2016)

- L1 hardware ~100kHz
- HLT software ~1kHz

Hadron Calorimeter

replaced HPDs→**SiPMs** in Endcaps in 2018

Catching particles: trigger and datasets

Multiple flavour of data allow to cover as much as possible the SM an BSM physics phase space

pp collisions

- "Standard triggers"
- B-parking: store data with lower trigger thresholds at end of fill, delay their processing →11B events enriched in unbiased B-decays !!!
- Scouting: lower pT threshold and mass selections thanks to a reduction of event size to O(10kB) due to physics objects reconstructed at the High Level Trigger (no full reco!)

Other flavors: <u>Heavy Ions, Low beta*, Low-PU</u>

The CMS Run 2 data-taking

Few challenges successfully accomplished during Run2

→BX time from 50ns (Run1) to 25ns(Run2)

 \rightarrow Significant number of pile-up interactions

All sub-detectors performed excellently

pp collisions

The Objects reconstruction - miscellanea

Consolidate existing algorithm thanks to a deep knowledge of the detector \rightarrow rs = 13 TeV, 2017 (Legacy) excellent performance

The Objects reconstruction

 Extensive use of MVA an Deep/ML techniques to consolidate and improve existing identification/reconstruction algorithms and explore new possibilities

Higgs bosons physics with full CMS Run II dataset

Measurement are performed with full Run II luminosity and results are interpreted in the STXS model

- Each Higgs boson production mode is split into numerous bins by kinematic features that are highly correlated with reconstruction-level objects.
- Reduce theory uncertainty and model dependence on measured bins

Η→γγ

Full Run 2 dataset used to analyze H decays to photons

- covering ggH, VBF, and associate production modes (V, tt, tH)
- overall signal strength modifier $\mu = 1.02^{-0.11}_{-0.9}$

 \rightarrow 10% precision

 \rightarrow most precise measurement of associated production with single top (x12 SM)

 results also provided in terms of production signal strengths and coupling modifiers in the κ-framework

<u>HIG-19-015</u>

Η→ττ

- Covering ggH, VBF in main final states ($e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$)
- Main background Z $\rightarrow \tau \tau$ estimated with embedding
- Overall signal strength modifier

$\mu {=} 0.85^{+0.07}_{-0.06} \, (th)^{+0.06}_{-0.06} \, (sys)^{+0.08}_{-0.07} \, (bbb)$

- Significant improvement in precision wrt to previous measurment
- Observed significance greater than 5sigma
- Improvement driven by the improved jet-to-tau discrimination
- Results also provided in terms of production signal strengths and coupling modifiers in the κ-framework

Ϋ́

H→μμ

- First evidence for the Higgs boson decay to fermions of the second generation.
- Select events with two well-isolated opposite-signed muons.
- Events classified on the topology of the production modes: ggH, VBF, VH and ttH tagged
 - VBF: signal extracted from DNN discriminant using kinematic input variables of di-muon and di-jet system
 - ggH, VH, ttH: simultaneous fit of m(μμ) system in bins of dedicated BDT
- The observed (expected for $\mu = 1$) significance at $m_{\rm H} = 125.38$ GeV is $3.0(2.5)\sigma$
- Signal strenght:

 $\mu {=} 1.\,19^{+0.41}_{-0.39}\,(stat)^{+0.17}_{-0.16}\,(sys)$

• Measured BR at 95% CL: $0.8 \times 10^{-4} < BR(H \rightarrow \mu\mu) < 4.5 \times 10^{-4}$

Towards completing the SM picture

- Best-fit value for κ_{μ} at 95% CL 0.65 < κ_{μ} < 1.53 (k μ =1.13)
- Higgs couplings with leptons and bosons are compatible with the SM prediction
- Significant increase in the precision wrt to Run1!

Probing the CP structure of the Higgs

- CP violating effects expected to be more experimentally accessible in coupling with fermions
 - 27deg precision on effective mixing angle between scalar and pseudoscalar with full Run2

- Using $H \rightarrow \tau \tau$ decays, measuring angular correlation between decay planes Φ_{CP} in $\tau_{\mu} \tau_{h}$ and $\tau_{h} \tau_{h}$ channels
 - Measurement of the direction of the tau-leptons decay product → Dedicated MVA decay mode identification with a BDT
- Background rejection with dedicated BDT(NN)
 - High sensitivity bins used for signal extraction
- Obs. (exp.) sensitivity to distinguish between the scalar and pseudo-scalar hypotheses 3.2 (2.3) σ
- Obs. (exp.) for the mixing angle between scalar and pseudoscalar hypotesis

$4\pm17\circ$ (0 $\pm\,23\circ$) at the 68% CL.

 uncertainties measured in ttH are ±55 (CMS) and ±43 (ATLAS)

Beyond Standard Model

See talks by L. Thomas (EXO), U. Sarkar (SUSY)

Exploring SUSY – electowikinos and s-leptons

EWK sector: much lower xsect but sensitivity to lower sparticle masses.

- 1. $Z(\rightarrow II)+2$ jets and moderate Etmiss (confirm results on gluinos production)
- 2. a kinematic edge in the invariant mass distribution of the lepton pair
- 3. Direct s-lepton production: moderate E_{tmiss}, hadronic activity, Z-veto

Excluded chargino (neutralino) masses up to 750 (800) GeV;

Excluded light-flavor (bottom) squark masses up to 1.7 TeV

Exclude Slepton masses up to 650 GeV

Search for dark photons in VBF Higgs events

- 38% UL @95% CL on BR(H \rightarrow BSM particles)
- SM Higgs + model independent search for Higgs bosons with mH in [125,1000] GeV, $H \rightarrow \gamma \gamma_{D}$
- H \rightarrow γ γ_D in VBF events. Final state with >=2 VBF tagged jets, single isolated γ and large E_{tmiss}
- Bkg: W(\rightarrow ev))+jets, W(\rightarrow Iv) + γ with I outside acceptance
 - Bkg norm. to data in CRs

ICNFP 2020- R. Venditti - CMS Highlights

Exclusive diphoton production with intact protons

- Trigger and offline selections on final state γ
- Intact Protons events: sensitivity enhanced requiring momentum conservation, thanks to the PPS measurement

→No events observed
 Upper limits at 95% CL on
 the 4-photon anomalous
 quartic couplings set.

- Two γ interactions via charged particle loop, create two outgoing γ (light-by-light scattering)
- Effective extension of the SM Lagrangian using charge-parity conserving operators probed
- High diphoton mass spectrum (>350 GeV) explored
- Signature: 2p+2γ→studied using data collected by CMS and TOTEM in 2016 (9.6 fb⁻¹)

CMS PAS EXO-18-014

Standard Model

Good agreement for many processes, over 15 orders of magnitude

Testing the Standard Model through rare processes and differential/precision measurements *possible due to excellent reconstruction and calibration performance results*

Production of polarized WW pairs in VBS – inspecting the EWSB

•Modifications of the production cross sections for the longitudinally polarized W are expected in BSM models, e.g., in scenarios involving additional Higgs bosons

Strategy:

- tag VBS events
 - ightarrow two energetic forward-backward tagging jets
 - \rightarrow large mjj and Δ yjj
 - ightarrow little hadronic activity between tagging jets in fully leptonic final states
- Isolate signal: EW polarized WW production with a BDT

 $\rightarrow W_{L^{\pm}} W_{L^{\pm}} \& W_{T^{\pm}} W_{x^{\pm}}$

- $\rightarrow W_T^{\pm} W_T^{\pm} \& W_I^{\pm} W_x^{\pm}$
- discriminate fake bkg from SM with another BDT
- Control regions used to constrain SM background (WZ, tZq, ZZ)
- Signal extraction with a simultaneous fit of 2D distribution of the 2 MVA discriminant in the SR and CRs

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W_L^{\pm}W_L^{\pm}$	$0.32^{+0.42}_{-0.40}$	0.44 ± 0.05
$\mathrm{W}_X^\pm\mathrm{W}_\mathrm{T}^\pm$	$3.06^{+0.51}_{-0.48}$	3.13 ± 0.35
$W_L^{\pm}W_X^{\pm}$	$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18
$W_T^{\pm}W_T^{\pm}$	$2.11\substack{+0.49 \\ -0.47}$	1.94 ± 0.21

Measured and theoretical fiducial cross section agree within uncertainties (COM frame of the WW).

Double Z Production in VBS

inspecting the EWSB

 Search for ZZ production in VBS events allows to access to triple and quartic gauge boson couplings
 anomalous modifications probed

•Search strategy similar to Higgs-to-ZZ analysis, in addition to the VBS tagging

- •Background mainly from dibosons production with QCD-induced jets
 - •constrained by the data in the fit
- •Main uncertainties:
 - QCD renormalization and factorization scales
 - Jet energy scale

•Signal strenght and significance of the EW signal determined using a matrix element discriminant (K_D) to separate the signal and the QCD background.

 Measured fiducial cross section consistent with SM

Triple Boson Production

<u>SMP-19-014</u>

a tool to probe the quartic gauge coupling

- If BSM is present around 1 TeV, VVV cross section might deviate from SM predictions
- Full Run2 dataset used to probe such rare processes

- Five final states considered, with up to 6 leptons:
 - WWW \rightarrow I \mp I[±]2 ν qq',
 - $W^{\pm}W^{\pm}W^{\mp} \rightarrow |^{\pm}|^{\pm}3\nu$
 - $W^{\pm}W^{\mp}Z \rightarrow I^{\pm}I^{\mp}2v I^{\pm}I^{\mp}$
 - W[±]ZZ \rightarrow | [±] v 2(| [±]|[∓])
 - ZZZ \rightarrow 3($|\mp|^{\mp}$).

•Background estimation: Non-isolated leptons from data, prompt lepton from MC

- Main systematic: estimation of background (limited stat.): 25% prompt, 50% non-prompt
- Analysis sensitivity in SS 3I and 4I channels is enhanced by using BDTs.
- Results in agreement with the SM!
- 5.7σ obs (5.9σ exp) significance for VVV

•

B-Physics

See Federica Simone's talk

07/09/20

ICNFP 2020- R. Venditti - CMS Highlights

Combination of the ATLAS, CMS and LHCb results on $B^0 \rightarrow \mu\mu$ and $B_s \rightarrow \mu\mu$

•B⁰→µµ and B_s→µµ via penguin loop diagrams helicity suppressed
 •any deviation from SM predicted values is hint for BSM physics →most sensitive FCNC (BRs ratio)
 •theoretical uncertainties significantly reduced

•Similar search strategy for the 3 analyses (di-muon triggers, rectangular cuts, BDT)

Combination performed using the binned twodimensional profile likelihoods obtained by each experiment from their fit to the dimuon invariant mass distributions in the two channels

$$\begin{array}{lll} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &=& \left(2.69 \, {}^{+0.37}_{-0.35}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &=& \left(0.6 \pm 0.7\right) \times 10^{-10}. \end{array}$$

- BR ratio $\mathcal{R} = 0.021^{+0.030}_{-0.025}$
- Bs lifetime (CMS+LHCB data)

$$au_{B^0_s o \mu^+ \mu^-} = 1.91^{+0.37}_{-0.35}\,\mathrm{ps}$$

Prompt open charm production

- Important tests of QCD, give insight into particle production at colliders
- **Baseline/background** for other physics studies
- Hadronization challenging to understand \rightarrow measurements needed
- 29/nb pp collisions collected in 2016 collected with ZeroBias trigger
- Phase space: 4 < pT (D) < 100 GeV && $|\eta|$ < 2.1

Analyzed processes + c.c.

- pp $\rightarrow D^{*+}X \rightarrow D^0\pi^+_{s}X \rightarrow K^-\pi^+\pi^+_{s}X$
- $pp \rightarrow D^0 X \rightarrow K^- \pi^+ X$,

•
$$pp \rightarrow D^+X \rightarrow K^-\pi^+\pi^+X$$
,

- Prompt cross section measured
 - non prompt contribution estimated with MC
- Fair agreement with the thoretical models tested
 - No MC or theoretical prediction describes the data well over the entire kinematic range

Towards next runs

See talks by: R. M. Chatterjee, A. Savin, C. Bino, C. Aruta, L. Cristella

Steps and Plans towards Run 3

Exploiting new detectors:

- Phase-1 pixel detector with updated Layer 1 electronics
- First layer of GEM muon detectors in the forward region
 New electrionics with depth segmentation in Hadronic Calorimeter

Planning to move to heterogeneous architecture in High Level Trigger, with mixed CPU/GPU

- Already achieved 25% reduction of CPU time
- Opens new possibilities for trigger algorithms leveraging on GPUs
- A testbed for HL-LHC Computing and triggering

Plan to improve Scouting and Parking data with more sophisticated approach

- The analysis of run2 dataset is ongoing, will tell us more about the potential of these innovative data taking methods
- Design of the new triggers is ongoing with the goal of enlarge the phase space
 - Improve LLP triggers at L1 and HLT
 - Improve B-parking triggers, possibly parking Low MET data for SUSY searches?

HL-LHC: Detector upgrade

Upgrades at the forefront of the technology to cope challeging data taking conditions→aim to fully exploit the 3000/fb int. luminosity to reach unprecedent precision in SM measurement and further constraint (or even find) new physics

Barrel Calorimeters

https://cds.cern.ch/record/2283187 ECAL crystal granularity readout at 40 MHz with precise timing ECAL and HCAL new Back-End boards

Muon systems

https://cds.cern.ch/record/2283189 •DT & CSC new FE/BE readout •RPC back-end electronics •New GEM/RPC 1.6 < η < 2.4 •Extended coverage to η ~ 3

L1-Trigger/HLT/DAQ

https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193 •Tracks in L1-Trigger at 40 MHz •PFlow-like selection 750 kHz output •HLT output 7.5 kHz

MIP Timing Layer https://cds.cern.ch/record/2296612

Precision timing with: Barrel layer: Crystals + SiPMs Endcap layer: Low Gain Avalanche Diodes

High Granularity Calorimeter

https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb/W-SS

Tracker https://cds.cern.ch/record/2272264

- Si-Strip and Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $\eta \simeq 3.8$

07/09/20

Conlusions

- Deep knowledge of the CMS detector and reconstruction algorithms matured during Run 2
 - Exthensive use of ML/DeepL
- Many significant results provided explointing full Run 2 luminosity
 - Yukawa Coupling with the second generation of lepton measured with full run 2 statistics
 - Standard model and B-physics searches mainly used as a tool to probe the presence of new physics
 - BSM physics further constrained with direct searches, exploiting full Run 2 luminosity

Overall, we submitted 1007 papers, having celebrated the 1000th paper on June 19th

- Work for Run 3 preparation ongoing, delay introduced by COVID was negligible
 - New detectors almost installed, new algorithm in tuning and validation phase
- Extensive work during Run2 for preparing the Phase 2 upgrade
 - Detector design in place, TDR finalized
 - HLT TDR in the pipeline, will come soon
- Incoming LHC runs will provide us much more data:
 - Less then 10% of the total (HL-)LHC luminosity delivered and analyzed so far

Thank you for your kind attention

