Studies of low-energy K⁻ hadronic nucleus/nuclei interactions with light nuclei by AMADEUS

Magdalena Skurzok*

On the behalf of the AMADEUS collaboration

Jagiellonian University in Krakow

9th International Conference on New Frontiers in Physics (ICNFP 2020)

Plan

- 1. Motivation and scientific case
- 2. AMADEUS @ DAΦNE
- 3. Analysis results
- 4. Summary

Motivation and Scientific Case

The investigation of the in-medium modification of the KN interaction is of fundamental for the low-energy QCD in the non perturbative regime.

Chiral perturbation theory (ChPT): effective field theory where mesons and baryons represent the effective degrees of freedom instead of the fundamental quark and gluon fields.

$$\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_B(\Phi, \Psi_B)$$

- The chiral symmetry is **spontaneously broken** \rightarrow the existence of massless and spinless Nambu-Goldstone bosons which are identified with the pions. Explicitly broken by **q** masses.
- Very successful in describing the πN , $\pi \pi$ and NN interactions in the low-energy regime and is considered as the theory of the low-energy strong interaction in the SU(2) flavour sector.

The extension of the theory to the sector with the <u>quark s</u> turns out to be more problematic since it is not directly applicable to the KN channel.

The χPT is not applicable to the \overline{KN} channel due to the emerging of the $\Lambda(1405)$ and the $\Sigma(1385)$ resonances just below the \overline{KN} mass threshold

$$\Sigma$$
 (1385) Λ (1405)

1500

 $\Lambda\pi$ $\Sigma\pi$
 $\overline{K}N$

Λ(1405) I=0
$$J^P = \frac{1}{2}^-$$
 M = (1405.1^{+1.3}_{-1.0}) MeV Γ = (50.5 ± 2.0) MeV decay modes: Σπ (I=0) 100%

Σ(1385) I=1
$$J^P = 3/2^+$$
 decay modes: $\Lambda \pi$ (I=1) (87.0 ± 1.5) % $\Sigma \pi$ (I=1) (11.7 ± 1.5) %

Possible solutions:

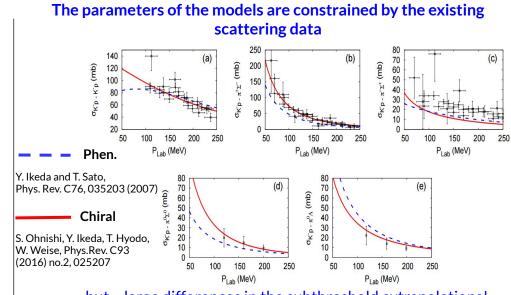
- Non-perturbative Coupled Channels approach: Chiral Unitary SU(3) Dynamics
- Phenomenological KN and NN potentials

The χPT is not applicable to the \overline{KN} channel due to the emerging of the $\Lambda(1405)$ and the $\Sigma(1385)$ resonances just below the \overline{KN} mass threshold

Σ (1385) Λ (1405)

$$\Lambda \pi \Sigma \pi$$
 $\overline{K}N$

(1405)

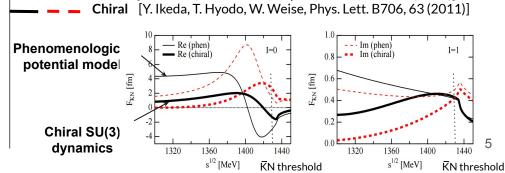

 $I = 0$
 $I = \frac{1}{2}$

Λ(1405) I=0
$$J^P = \frac{1}{2}$$
 M = (1405.1^{+1.3}_{-1.0}) MeV Γ = (50.5 ± 2.0) MeV decay modes: Σπ (I=0) 100%

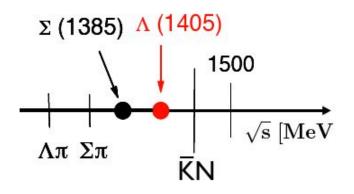
Σ(1385) I=1
$$J^P = 3/2^+$$
 decay modes: $\Lambda \pi$ (I=1) $(87.0 \pm 1.5) \%$ $\Sigma \pi$ (I=1) $(11.7 \pm 1.5) \%$

Possible solutions:

 Non-perturbative Coupled Channels approach: Chiral Unitary SU(3) Dynamics
 Phenomenological KN and NN potentials



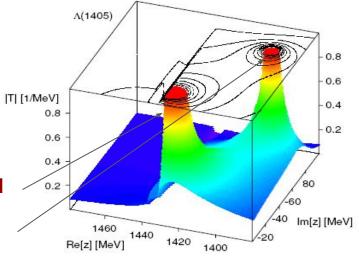
...but... large differences in the subthreshold extrapolations!


Significantly weaker attraction in chiral SU(3) models than in phenomenological potential models.

Phen. [Y. Akaishi, T. Yamazaki, Phys. Rev. C65, 044005 (2002)]

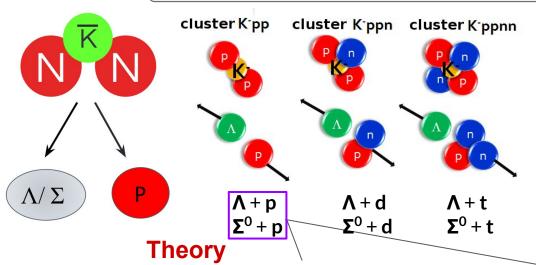
Re

The controversial nature of the $\Lambda(1405)$



The $\Lambda(1405)$ state does not fit with the simple three quarks model (*uds*) and it is commonly accepted that it is, at least partially, a \overline{KN} bound state.

• Chiral SU(3) coupled channel dynamics: the state is given by the superpositions of two poles of the KN scattering amplitude.


M = 1425 MeV → mainly coupled to the KN channel

M = 1380 MeV \rightarrow mainly coupled to the Σπ channel

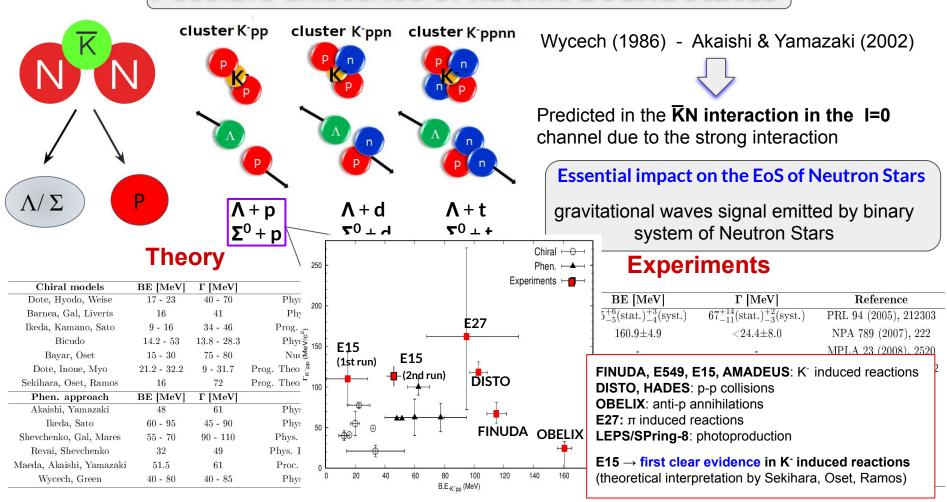
• Phenomenological potentials models: the Λ (1405) is a pure \overline{KN} bound state with mass M=1405 MeV, binding energy BE = 27 MeV and width Γ =50 MeV.

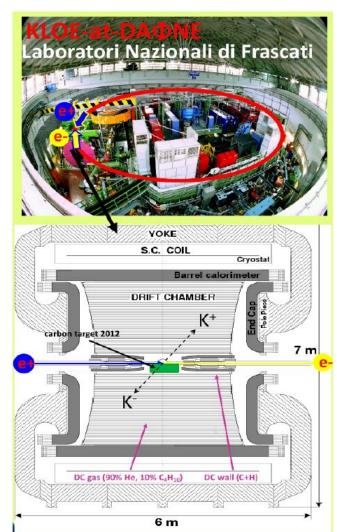
Possible existence of kaonic bound states

Wycech (1986) - Akaishi & Yamazaki (2002)

Predicted in the **KN interaction in the I=0** channel due to the strong interaction

Essential impact on the EoS of Neutron Stars


gravitational waves signal emitted by binary system of Neutron Stars


Experiments

Chiral models	BE [MeV]	$\Gamma [{ m MeV}]$	Reference
Dote, Hyodo, Weise	17 - 23	40 - 70	Phys. Rev. C 79 (2009) 014003
Barnea, Gal, Liverts	16	41	Phys. Lett. B 712 (2012) 132
Ikeda, Kamano, Sato	9 - 16	34 - 46	Prog. Theor. Phys. (2010) 124 (3)
Bicudo	14.2 - 53	13.8 - 28.3	Phys. Rev. D 76 (2007) 031502
Bayar, Oset	15 - 30	75 - 80	Nucl. Phys. A 914 (2013) 349
Dote, Inoue, Myo	21.2 - 32.2	9 - 31.7	Prog. Theor. Exp. Phys. 2015 (2015) 043D02
Sekihara, Oset, Ramos	16	72	Prog. Theor. Exp. Phys. 2016 (2016) 123D03
Phen. approach	BE [MeV]	$\Gamma [{ m MeV}]$	Reference
Akaishi, Yamazaki	48	61	Phys. Rev. C 65 (2002) 044005
Ikeda, Sato	60 - 95	45 - 90	Phys. Rev. C 76 (2007) 035203
Shevchenko, Gal, Mares	55 - 70	90 - 110	Phys. Rev. Lett. 98 (2007) 082301
Revai, Shevchenko	32	49	Phys. Rev. C 90 no. 3 (2014) 034004
Maeda, Akaishi, Yamazaki	51.5	61	Proc. Jpn. Acad. B 89 (2013) 418
Wycech, Green	40 - 80	40 - 85	Phys. Rev. C 79 (2009) 014001

Experiment	BE [MeV]	$\Gamma [{ m MeV}]$	Reference
FINUDA	$115^{+6}_{-5}(\text{stat.})^{+3}_{-4}(\text{syst.})$	$67^{+14}_{-11}(\text{stat.})^{+2}_{-3}(\text{syst.})$	PRL 94 (2005), 212303
OBELIX	$160.9 {\pm} 4.9$	$< 24.4 \pm 8.0$	NPA 789 (2007), 222
E549	-1	=	$\mathrm{MPLA}\ 23\ (2008),\ 2520$
DISTO	$103\pm3(\mathrm{stat.})\pm5(\mathrm{syst.})$	$118 \pm 8 (\mathrm{stat.}) \pm 10 (\mathrm{syst.})$	$PRL\ 104\ (2010),\ 132502$
${ m LEPS/SPring-8}$	Upper limit		PLB 728 (2014), 616
HADES	Upper limit		PLB 742 (2015), 242
E27	$95^{+18}_{-17}(\text{stat.})^{+30}_{-21}(\text{syst.})$	$162^{+87}_{-45}(\text{stat.})^{+66}_{-78}(\text{syst.})$	PTEP (2015), 021D01
AMADEUS	Upper limit		PLB 758 (2016), 134
E15 1st run	$15^{+6}_{-8}(\text{stat.}) \pm 12(\text{syst.})$	$110^{+19}_{-17}(\text{stat.})\pm27(\text{syst.})$	PTEP (2016), 051D01
E15 2nd run	$47\pm3(\text{stat.})^{+3}_{-6}(\text{syst.})$	$115\pm7({\rm stat.})^{+10}_{-20}({\rm syst.})$	PLB 789 (2019) , 612

Possible existence of kaonic bound states

AMADEUS @ DAONE

DAΦNE

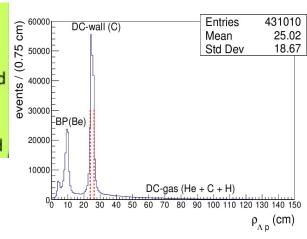
- $\phi \to K^- K^+ (49.2\%), \approx 1000 \phi/s$
- monochromatic low momentum Kaons ≈127 Mev/c
- back to back K⁻ K⁺ topology
- small hadronic background due to the beam

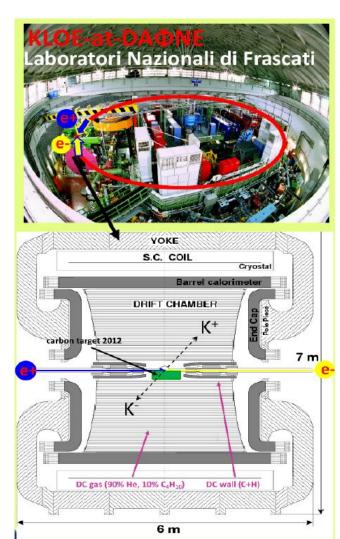
KLOE

- Cilindrical DC with 4π geometry & electromagnetic calormeter
- 96% acceptance
- high efficiency and resolution for charged and neutral particles
- exclusive measurement of the considered

AT-REST

 K^- absorbed from atomic orbitals $(p_{\nu} \sim 0 \text{ MeV/c})$





AMADEUS: KLOE 2004-2005 dataset analysis (\mathcal{L} = 1.74 pb-1)

Possibility to use KLOE materials as an active target

- DC wall (750 μm C foil, 150 μm Al foil);
- DC gas (90% He, $10\% C_4 H_{10}$).

AMADEUS @ DAФNE

DAФNE

- $\phi \to K^- K^+ (49.2\%), \approx 1000 \phi/s$
- monochromatic low momentum Kaons ≈127 Mev/c
- back to back K⁻ K⁺ topology
- small hadronic background due to the beam

KLOE

- Cilindrical DC with 4π geometry & electromagnetic calormeter
- 96% acceptance
- high efficiency and resolution for charged and neutral particles

exclusive measurement of the considered

K⁻ absorption on light nuclei AT REST & IN FLIGHT

AMADEUS: KLOE 2004-2005 dataset analysis (\mathcal{L} = 1.74 pb-1)

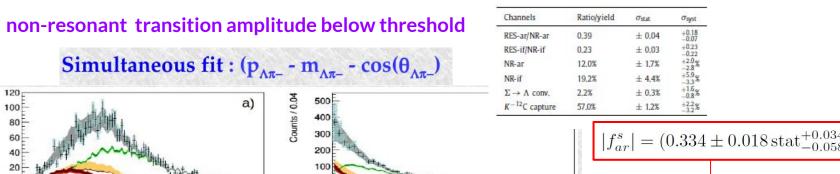
AMADEUS scientific case

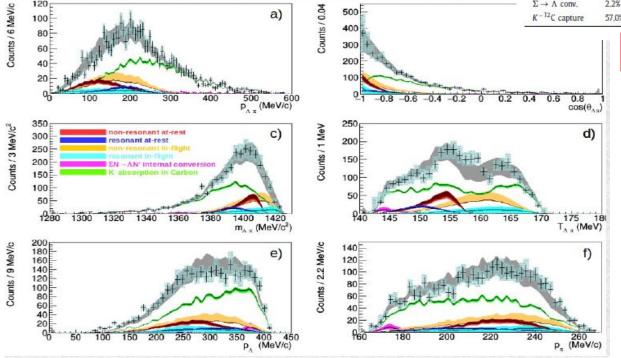
- nature of Λ(1405) and K⁻N amplitude below threshold
- low-energy charged K cross section (for p=100MeV)

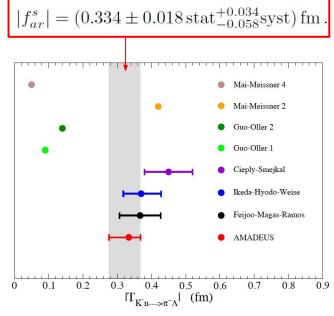
Yπ correlation studies $(\Lambda \pi, \Sigma \pi)$ final states)

- K⁻ multiN absorption
- kaonic nuclear clusters

YN correlation studies $(\Lambda p, \Sigma^0 p, \Lambda t \text{ final states})_{10}$


<u>Λπ</u> analysis: K n non-resonant transition amplitude 1.0 First determination of the non-resonant 0.5 transition amplitude below threshold 0.0 Kn (fm) **Investigated using:** K^- "n" $\rightarrow \Lambda \pi^-$ direct formation in ⁴He (DC volume) -1.01400 1450 $s^{1/2}$ (MeV) K-Im F_{K'n} (fm) ⁴He $|f|^{N-R}$ $_{\Lambda\pi}$ (I=1) 1500 1400 1450


K⁻n scattering amplitude with Chiral models

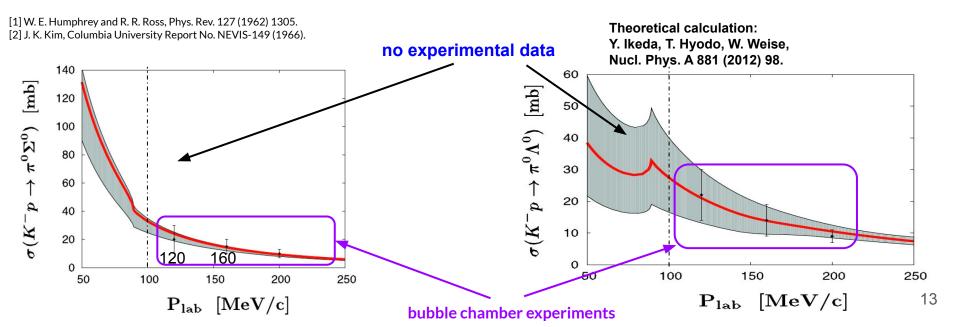

s^{1/2} (MeV)

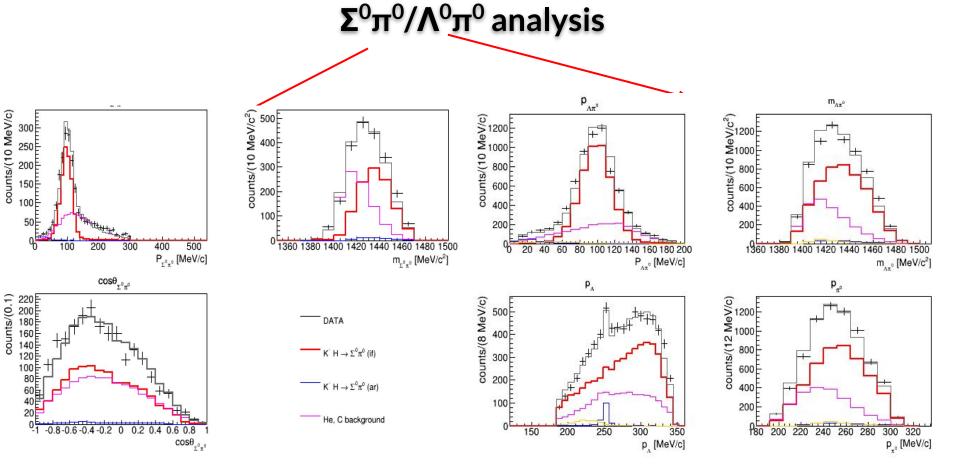
J. Hrtankova, J. Mares, Phys. Rev. C96, 015205 (2017)A. Cieply et al, Nycl. Phys. A 954, 17 (2016)

The detailed characterisation of the yield and spectral shape of the non-resonant antiKN absorption is fundamental reference to extract the $\Lambda(1405)$ properties in KN absorption experiments

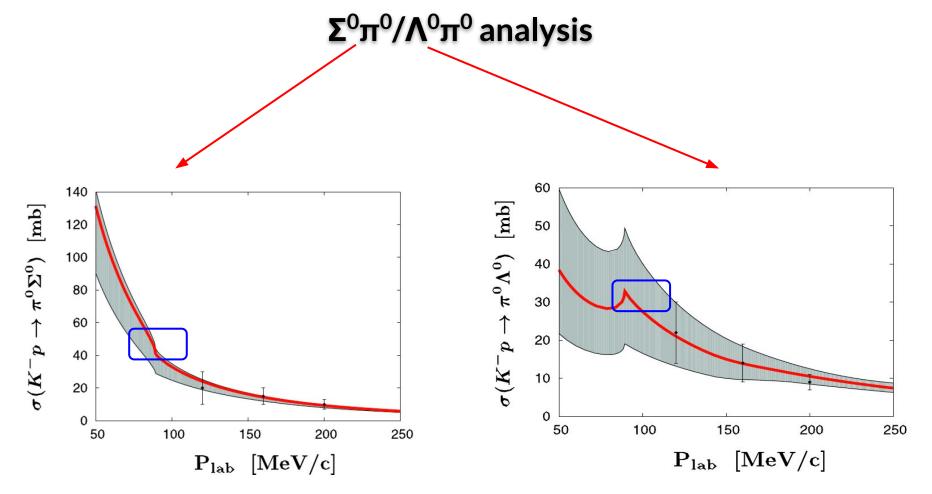
Investigated using: K^{-} "n" ${}^{3}He \rightarrow \Lambda \pi^{-} {}^{3}He$

K. Piscicchia, et. al., Phys. Lett. B782, 339 (2018) K. Piscicchia, S. Wycech, C. Curceanu, Nucl. Phys. A 954, 75 (2016)


12


Σ^0 π⁰/ Λ^0 π⁰ analysis

Motivation:


- 1) The available data for the inelastic $K^{\text{-}}\,p\to\Sigma^0\,\pi^0$ cross section close to threshold:
- three points in the p_K=120-200 MeV/c range (bubble chamber experiments),
- uncertainties larger than 30%,
- the K⁻ p $\to \Sigma^0$ π^0 cross sections are obtained **not directly but** on the basis of the isospin symmetry argument, from the measurement of K⁻ p $\to \Lambda \pi^0$ events

Low momentum K⁻ scattering cross sections in this Isospin I = 0 channel represent a fundamental input for the non-perturbative low energy QCD models

PRELIMINARY

Cross sections for $p_K = 98\pm10 \text{ MeV/c}$

K⁻ multi-nucleon absorptions

In K⁻-nuclei optical potential a K⁻ multi-nucleon absorption term is necessary to fit the kaonic atoms data:

$$V_{K^{-}}(\rho) = V_{K^{-}}^{(1)}(\rho) + V_{K^{-}}^{(2)}(\rho) \longrightarrow \text{multi-nucleon term}$$
 [E. Friedman, A. Gal, Nucl. Phys. A 959, 66 (2017)] [Hrtánková, J. & Mareš, J. Phys. Rev. C96, 015205 (2017)]

single nucleon term from chiral models

- K^{-} "N" $\rightarrow Y \pi$ pionic processes Single nucleon absorption (1NA):
- Two nucleon absorption (2NA): K^{-} "NN" \rightarrow Y N

[E. Friedman, A. Gal, Nucl. Phys. A 959, 66 (2017)]

- Three nucleon absorption (3NA): K^{-} "NNN" \rightarrow Y (NN)
- Four nucleon absorption (4NA): K^{-} "NNNN" \rightarrow Y (NNN)

bound nucleons = "N", "NN", "NNN", "NNNN"
bound or unbound nucleons = (NN), (NNN)
$$Y = \Lambda, \Sigma$$

non-pionic processes

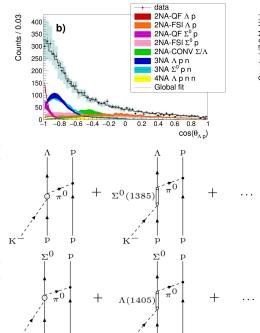
<u>Λp analysis:</u> K⁻ multi-nucleon absorption BRs and σ

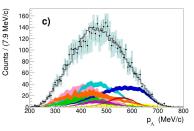
Simultaneous fit of:

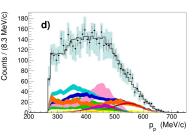
- Ap invariant mass;
- angular correlation;
- proton momentum;
- Λ momentum.

Total reduced χ^2 : $\chi^2/dof = 0.94$

Counts / (5.3 MeV/c^2)	180 160 2 140 120 100 100 100 100 100 100 100 100 10			The state of the s	
	2050	2100 21	50 2200 225	50 2300 2350 m. (MeV	2400 (c ²)


Process	Branching Ratio (%)	σ (mb)	@	$p_K \; (\mathrm{MeV}/c$
2NA-QF Λp	$0.25 \pm 0.02 \text{ (stat.)} ^{+0.01}_{-0.02} \text{(syst.)}$	$2.8 \pm 0.3 \text{ (stat.)} ^{+0.1}_{-0.2} \text{ (syst.)}$	@	128 ± 29
2NA-FSI Λp	$6.2 \pm 1.4(\text{stat.}) ^{+0.5}_{-0.6}(\text{syst.})$	$69 \pm 15 \text{ (stat.)} \pm 6 \text{ (syst.)}$	@	128 ± 29
2NA-QF Σ^0 p	$0.35 \pm 0.09(\text{stat.}) ^{+0.13}_{-0.06}(\text{syst.})$	$3.9 \pm 1.0 \text{ (stat.)} ^{+1.4}_{-0.7} \text{ (syst.)}$	@	128 ± 29
2NA-FSI Σ^0 p	$7.2 \pm 2.2(\text{stat.}) {}^{+4.2}_{-5.4}(\text{syst.})$	$80 \pm 25 \text{ (stat.)} ^{+46}_{-60} \text{ (syst.)}$	@	128 ± 29
2NA-CONV Σ/Λ	$2.1 \pm 1.2(\text{stat.}) ^{+0.9}_{-0.5}(\text{syst.})$	-		
3NA Λpn	$1.4 \pm 0.2 \text{(stat.)} ^{+0.1}_{-0.2} \text{(syst.)}$	$15 \pm 2 \text{ (stat.)} \pm 2 \text{ (syst.)}$	@	117 ± 23
$3NA \Sigma^{0}pn$	$3.7 \pm 0.4(\text{stat.}) {}^{+0.2}_{-0.4}(\text{syst.})$	$41 \pm 4 \text{ (stat.)} ^{+2}_{-5} \text{ (syst.)}$	@	117 ± 23
4NA Λpnn	$0.13 \pm 0.09(\text{stat.}) {}^{+0.08}_{-0.07}(\text{syst.})$	-		
Global $\Lambda(\Sigma^0)$ p	$21 \pm 3(\text{stat.}) ^{+5}_{-6}(\text{syst.})$	-		


The ratio between the branching ratios of the 2NA-QF in the Λp channel and in the $\Sigma^0 p$ is measured to be:

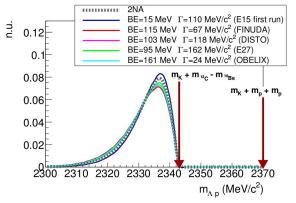

$$\mathcal{R} = \frac{BR(K^{-}pp \to \Lambda p)}{BR(K^{-}pp \to \Sigma^{0}p)} = 0.7 \pm 0.2(stat.)^{+0.2}_{-0.3}(syst.)$$

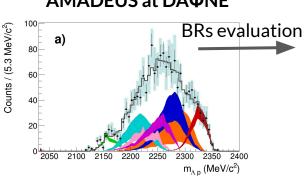
and the ratio between the corresponding phase spaces is $\mathcal{R}' \simeq 1.22$.

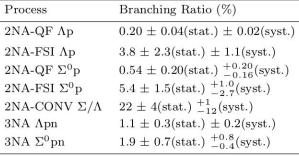
R. Del Grande et al., Eur. Phys. J. C79 (2019) no.3, 190

information on the in-medium properties of the $\Lambda(1405)$.

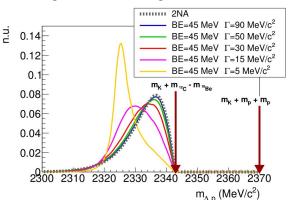
According to the pion exchange model:

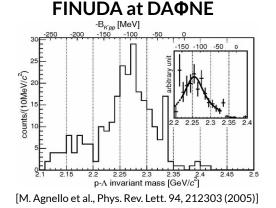

$$\frac{BR(K^-pp \to \Lambda p)}{BR(K^-pp \to \Sigma^0 p)} = \frac{BR(K^-p \to \Lambda \pi^0)}{BR(K^-p \to \Sigma^0 \pi^0)}$$


[E. Oset and H. Toki, Phys. Rev. C 74 (2006) 015207]


<u>Ap analysis:</u> K⁻pp bound state search

Using BE and Γ from experiments:







R. Del Grande et al., Eur. Phys. J. C79 (2019) no.3, 190

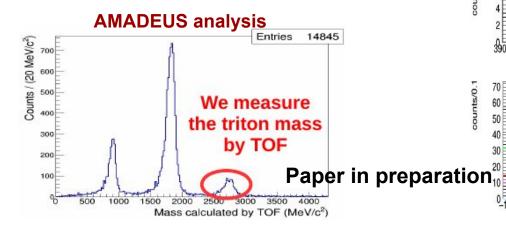
K⁻pp bound state contribution completely overlaps with the K⁻2NA

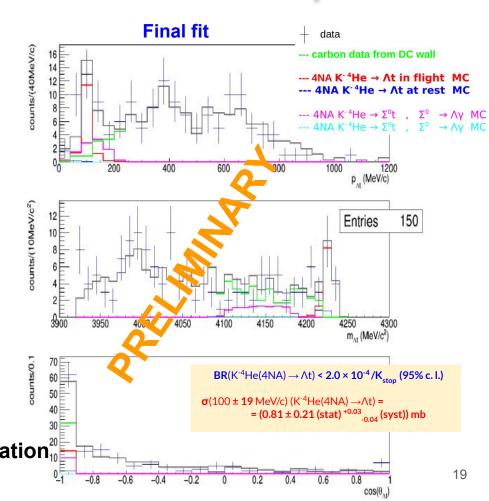
<u>At analysis</u>: Cross section and BR for 4NA in $K^{-4}He$ → **At** process

Previous data:

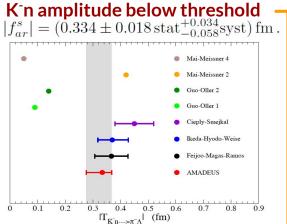
- in ⁴He: bubble chamber experiment

/M. Roosen, J. H. Wickens, Il Nuovo Cimento 66, 101 (1981)/ only 3 events compatibile with Λt kinematics found

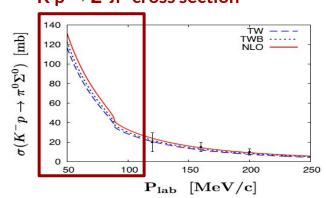

$$BR(K^{-4}He \rightarrow \Lambda t) = (3 \pm 2) \times 10^{-4}/K_{ston} \rightarrow global, no 4NA$$


- in **solid targets:** ^{6,7}**Li**, ⁹**Be** (FINUDA)

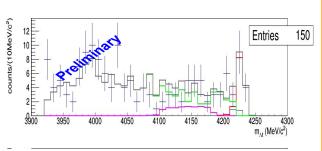
/Phys. Lett. B, 229 (2008)/


40 events, only back-to-back data

 $\Lambda t \text{ emission yield } \rightarrow 10^{-3} - 10^{-4} / \text{ K}_{\text{stop}}^{-} \rightarrow \text{global, no 4NA}$

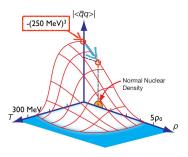

Summary

Λ p channel: 2NA, 3NA and 4NA BRs and σ

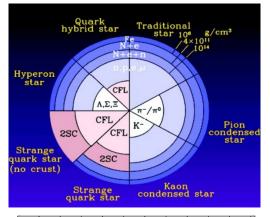

Process	Branching Ratio (%)	σ (mb)	@	$p_K (\mathrm{MeV/c})$
2NA-QF Λp	$0.25 \pm 0.02 \text{ (stat.)} ^{+0.01}_{-0.02} \text{(syst.)}$	$2.8 \pm 0.3 \text{ (stat.)} ^{+0.1}_{-0.2} \text{ (syst.)}$	@	128 ± 29
2NA-FSI Λp	$6.2 \pm 1.4 ({\rm stat.}) {}^{+0.5}_{-0.6} ({\rm syst.})$	$69 \pm 15 \text{ (stat.)} \pm 6 \text{ (syst.)}$	@	128 ± 29
2NA-QF Σ^0 p	$0.35 \pm 0.09(\text{stat.}) {}^{+0.13}_{-0.06}(\text{syst.})$	$3.9 \pm 1.0 \text{ (stat.)} ^{+1.4}_{-0.7} \text{ (syst.)}$	@	128 ± 29
2NA-FSI $\Sigma^0 p$	$7.2 \pm 2.2 \text{(stat.)} ^{+4.2}_{-5.4} \text{(syst.)}$	$80 \pm 25 \text{ (stat.)} ^{+46}_{-60} \text{ (syst.)}$	@	128 ± 29
2NA-CONV Σ/Λ	$2.1 \pm 1.2 \text{(stat.)} ^{+0.9}_{-0.5} \text{(syst.)}$	-		
3NA Λpn	$1.4 \pm 0.2 \text{(stat.)} ^{+0.1}_{-0.2} \text{(syst.)}$	$15 \pm 2 \text{ (stat.)} \pm 2 \text{ (syst.)}$	@	117 ± 23
3NA Σ^0 pn	$3.7 \pm 0.4 \text{(stat.)} ^{+0.2}_{-0.4} \text{(syst.)}$	$41 \pm 4 \text{ (stat.)} ^{+2}_{-5} \text{ (syst.)}$	@	117 ± 23
$4{\rm NA}~\Lambda{\rm pnn}$	$0.13 \pm 0.09(\text{stat.}) {}^{+0.08}_{-0.07}(\text{syst.})$	=		
Global $\Lambda(\Sigma^0)$ p	$21 \pm 3(\text{stat.}) ^{+5}_{-6}(\text{syst.})$	-		

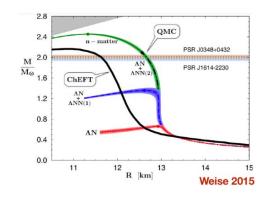
$K^{-}p \rightarrow \Sigma^{0}\pi^{0}$ cross section

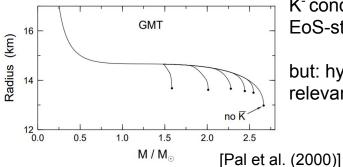
Λ t channel: 4NA BRs and σ


BR(K⁻⁴He(4NA) \rightarrow Λ t) < 2.0 × 10⁻⁴/K_{stop} (95% c. l.) σ (100 ± 19 MeV/c) (K⁻⁴He(4NA) \rightarrow Λ t) = = $(0.81 \pm 0.21 \text{ (stat)}^{+0.03} \text{ (syst)}) \text{ mb}$

Impact on in-medium KN interaction

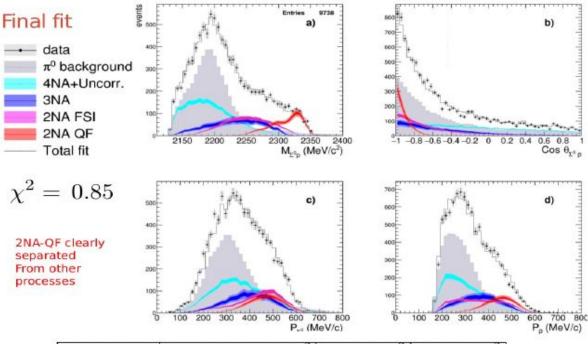

 Partial restoration of chiral symmetry in medium

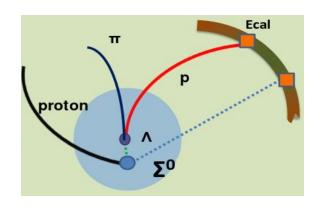



kaon mass modification:

$$m_{\mathrm{K}}^{*2} = m_{\mathrm{K}}^2 - \frac{\Sigma_{\mathrm{KN}}}{f_{\pi}^2} \rho + \mathcal{O}\left(k_F^4\right)$$

• Impact on Equation of State (EoS) of Neutron Stars:




K⁻ condensate can change EoS-stiffness

but: hyperons become more relevant at higher densities [Gal et al. (2016)]

Σ⁰**p analysis**: K⁻ multi-nucleon absorptions in ¹²C

 $K^{-12}C \rightarrow \Sigma^{0} p R \rightarrow (p \pi^{-}) \gamma p R$ detected particles

No statistically significant bound state emerges at 2σ level

	yield / $K_{stop}^- \cdot 10^{-2}$	$\sigma_{stat} \cdot 10^{-2}$	$\sigma_{syst} \cdot 10^{-2}$
2NA-QF	0.127	$\pm \ 0.019$	+0.004 -0.008
2NA-FSI	0.272	± 0.028	+0.022 -0.023
Tot 2NA	0.376	± 0.033	+0.023 -0.032
3NA	0.274	± 0.069	+0.044 -0.021
Tot 3body	0.546	± 0.074	+0.048 -0.033
4NA + bkg.	0.773	$\pm \ 0.053$	+0.025 -0.076

O. Vazquez Doce, et. al., Phys. Lett. B758, 134 (2016)

<u>Λπ analysis</u>: K n non-resonant transition amplitude

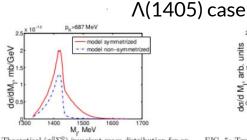


FIG. 4: Theoretical $(\pi^0\Sigma^0)$ invariant mass distribution for an initial kaon lab momenta of 687 MeV. The non-symmetrized distribution also contains the factor 1/2 in the cross section.

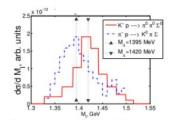
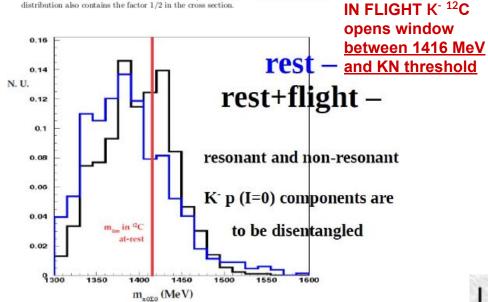
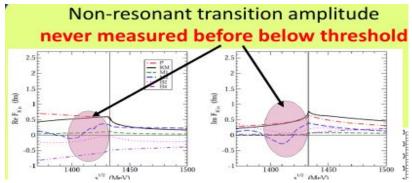
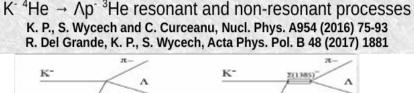
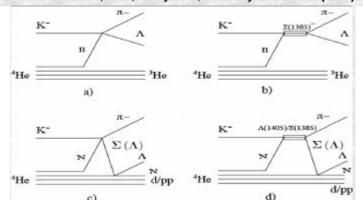
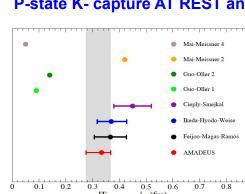
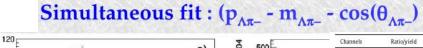




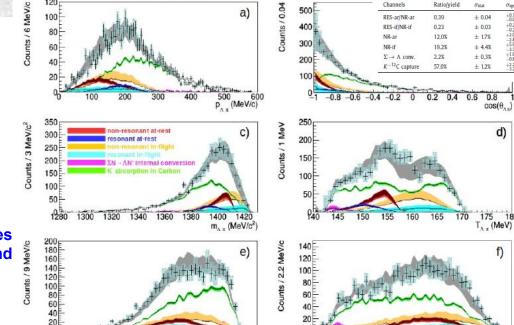
FIG. 5: Two experimental shapes of $\Lambda(1405)$ resonance. See text for more details.




Goal: how much comes from resonance in $K^-N \to Y_{\pi}$


J. Hrtankova, J. Mares, Phys. Rev. C96, 015205 (2017) A. Cieply et al, Nycl. Phys. A 954, 17 (2016)


Simulations for resonant and non-resonant processes performed based on calculations for both S-state and P-state K- capture AT REST and IN FLIGHT



From the well known Σ^* transition probability:

$$\frac{\text{NR} - \text{ar}}{\text{RES} - \text{ar}} = \frac{\int_0^{pmax} \frac{P_{ar}^{nr}(p_{\Lambda\pi}) dp_{\Lambda\pi}}{\int_0^{pmax} \frac{P_{ar}^{res}(p_{\Lambda\pi}) dp_{\Lambda\pi}}{P_{ar}^{res}(p_{\Lambda\pi}) dp_{\Lambda\pi}}}{= |f_{ar}^s|^2 \cdot 8,94 \cdot 10^5 \text{MeV}^2}$$

 $|f_{ar}^{nr}| = |A_{K-n \to \Lambda \pi^-}| = (0.334 \pm 0.018 \, \text{stat}^{+0.034}_{-0.058} \, \text{syst}) \, \text{fn}$

1) extract the amplitude for each model .. $A_{K-n} = (ReF_{K-n}^2 + ImF_{K-n}^2)^{1/2}$

Phase spaces ratios

2) scale the amplitudes for the K n couplings to the $\Sigma \pi^0$ and $\Sigma^0 \pi$ channels:

$$\frac{Prob_{K^-n\to\Lambda\pi^-}}{Prob_{K^-n\to\Sigma^-\pi^0}} = \frac{Ph_{K^-n\to\Lambda\pi^-}}{c_1Ph_{K^-n\to\Sigma^-\pi^0}}$$
Isospin (1, 1) =
$$= (1, -1) \text{ component}$$

$$\frac{Prob_{K^-n\to\Lambda\pi^-}}{Prob_{K^-n\to\Lambda\pi^-}} = \frac{Ph_{K^-n\to\Lambda\pi^-}}{Ph_{K^-n\to\Lambda\pi^-}}$$

K. Piscicchia, et. al., Phys. Lett. B782, 339 (2018)