Radiation Dominated Implosion with Flat Target

László P. CSERNAI, Mária CSETE, Igor N. MISHUSTIN, Anton MOTORNENKO, István PAPP, Leonid M. SATAROV, Horst STÖCKER, and Norbert KROÓ

A (1) > A (2) >

Considerations for the target Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion

Direct vs Indirect drive

・ロト ・回ト ・ヨト ・ヨト 三日

Considerations for the target Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion

Hohlraum

[O.A. Hurricane et al., Nature, 506, 343 (2014)]

イロト イヨト イヨト イヨト

э

Considerations for the target Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion

イロト イヨト イヨト イヨト

NIF older | newer target

• gold hohlraum | depleted uranium hohlraum

Considerations for the target Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion

OMEGA Experiment

ARTICLES

NATURE PHYSICS DOI: 10.1038/NPHYS3614

イロン 不同 とくほど 不同 とう

Э

Figure 1 | Configuration of the target, experimental layout, and laser parameters. a, Schematics of the cone-in-shell target, laser beams and main diagnostics. b, OMEGA ultraviolet driver beam pulse shape.

Inertial Confinement Fusion Radiation Dominated Implosion

イロン 不同 とうほう 不同 とう

크

Objective

Achieve fusion reaction conditions taking into consideration:

- $D + T \to n(14.1 \text{MeV}) + {}^{4}\text{He}(3.5 \text{MeV})$
- Rapid, volume ignition in Inertial Confinement Fusion (ICF), to avoid **Rayleigh-Taylor** instabilities.
- Achieve simultaneous ignition by increasing absorption with Au nano-spheres.
- If the density of D and T are n_1 , n_2 then the rate of DT reactions are proportional with $n_1 n_2 \langle \sigma \mathbf{v} \rangle$

Inertial Confinement Fusion Radiation Dominated Implosion

イロト イヨト イヨト イヨト

э

Rayleigh-Taylor Instability

Considerations for the target Conclusions and the future Inertial Confinement Fusion Radiation Dominated Implosion

RFD

Figure 5.10: Smooth change from spacelike to timelike detonation [Csernai, L.P. (1987). Detonation on a time-like front for relativistic systems. Zh. Eksp. Teor. Fiz. 92, 379-386.]

Simplified model for flat target Absorptivity of the target Absorptivity by nano-technology

Old spherical target configuration

Let us chose a point on the sphere, and the angle of this point from the x-axis is denoted by Θ . Then the length between this surface point and the point at r is $\tau = (R^2 + r^2 - 2Rr\cos\Theta)^{1/2}$. If the speed of light is c = 1 then the propagation time from the surface point to the point at r equals τ .

[Csernai, L.P., Kroo, N. and Papp, I. (2018). Radiation dominated implo- sion with nano-plasmonics, Laser and Particle Beams 36, 171-178. DOI: 10.1017/S0263034618000149]

Simplified model for flat target Absorptivity of the target Absorptivity by nano-technology

Changing absorptivity

[Csernai, L.P., Kroo, N. and Papp, I. (2017). Procedure to improve the stability and efficiency of laser-fusion by nano-plasmonics method. Patent P1700278/3 of the Hungarian Intellectual Property Office.]

イロト イヨト イヨト イヨト

Simplified model for flat target Absorptivity of the target Absorptivity by nano-technology

Flat target

Schematic view of the cylindrical, flat target of radius, *R*, and thickness, *h*. [L.P. Csernai, M. Csete, I.N. Mishustin, A. Motornenko, I. Papp, L.M. Satarov, H. Stcker & N. Kro, Radiation- Dominated Implosion with Flat Target, *Physics* and Wave Phenomena, **28** (3) 187-199 (2020)]

Simplified model for flat target Absorptivity of the target Absorptivity by nano-technology

イロン 不同 とくほど 不同 とう

Flat target

$$V = 2\pi R^3$$
, $R = \sqrt[3]{V/(2\pi)}$, $h = \sqrt[3]{4V/\pi}$.

- Based on the NIF results the necessary ignition energy of the DT target is Q/m = 207.7 kJ/mg.
- Assuming $Q_0 = 100$ J laser pulse energy we can ignite a DT target $m = 0.481 \ \mu g$.
- Density of DT ice $\rho = 0.225 \text{ g/cm}^3$, with volume of $V = 0.00214 \text{ mm}^3$.
- For a minimal target surface, 2R = h = 0.111 mm, and its cross section is A = 0.0153 mm².
- The critical energy density for ignition is: $\epsilon = \rho \cdot Q/m = 46.47 \text{ MJ/cm}^3 \text{ (kJ/mm}^3)$, while the required pulse duration is $t_{pulse} = h/c_{DT} = 0.526 \text{ ps}$.

Simplified model for flat target Absorptivity of the target Absorptivity by nano-technology

Constant absorption

The **integrated energy** up to a given time in the space-time across the **depth**, h, of the flat target. The color strip indicates the energy density, in units of the critical energy density (T_c) .

Simplified model for flat target Absorptivity of the target Absorptivity by nano-technology

Varying absorptivity

Deposited energy per unit time in the space-time plane across the depth, h, of the flat target.

To increase central absorption we used the following distribution:

$$\alpha_{ns}(s) = \alpha_{ns}^{C} + \alpha_{ns}(0) \cdot \exp\left[4 \times \frac{\left(\frac{s}{100}\right)^{2}}{\left(\frac{s}{100} - 1\right)\left(\frac{s}{100} + 1\right)}\right].$$

Simplified model for flat target Absorptivity of the target Absorptivity by nano-technology

Varying absorptivity

The contour line T = 1, indicates the critical energy density, T_c where the phase transition or ignition in the target is reached. This contour line is almost at a constant time, indicating **simultaneous ignition** in the whole target volume.

Simplified model for flat target Absorptivity of the target Absorptivity by nano-technology

Doping with gold

(a) Left: Single core-shell nano-sphere. Right: Rectangular lattice of nano-spheres in a transverse layer of the target.

(b) Optical cross-section of an individual core-shell nano-sphere optimized to absorb light at 800 nm wavelength and optical response of the same core-shell nano-spheres composing a rectangular lattice.

Conclusions

- Mechanical, pressure driven processes are subject to RT instability, while shorter and more energetic irradiation can prevent the possibility of all mechanical instabilities.
- In our model, we see that the critical ignition energy density is reached in about 80% of the target volume simultaneously.
- For more realistic estimates we need relativistic fluid dynamical, PICR analysis of the dynamics of the compression and expansion of the system.
- More results will be shown in the presentations of L.P. Csernai and A. Bonyár on the workshop in September 11th.