Elliptic and triangular collective flow of identified charged hadrons in Au+Au at $\sqrt{s_{NN}}$ =200 GeV

Petr Parfenov for the STAR Collaboration

National Research Nuclear University MEPhl

ICNFP 2020 - 9th International Conference on New Frontiers in Physics

Kolymbari, Crete (Greece), Sep. 4-11, 2020

Outline

- Motivation
- Anisotropic flow at RHIC and LHC
- The STAR detector at RHIC
- Analysis methods
- Results
- Summary and Outlook

Phase Diagram of the Strongly-Interacting Matter

Top RHIC/LHC: validation of the cross over transition leading to the sQGP

- >Top RHIC energy /LHC access to high T and small $\mu_{_{\rm B}}$
- PRHIC-BES/SPS/NICA/FAIR access to different systems and a broad domain of the ($\mu_{\rm R}$,T)-plane

$$\frac{\eta}{s}(T,\mu), \frac{\zeta}{s}(T,\mu), c_s(T), \hat{q}(T), \alpha_s(T), \text{ etc}$$

Anisotropic Collective Flow at RHIC/LHC

Initial eccentricity (and its attendant fluctuations), ε_n , drives momentum anisotropy, v_n , with specific viscous modulation

Anisotropic Collective Flow at RHIC/LHC

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302

STAR PRL118 (2017) 212301

 V_n (p_T , centrality) - sensitive to the early stages of collision. Important constraint for transport properties: EOS, η/s , ζ/s , etc.

 V_n of identified hadrons:

Mass ordering at $p_T < 2 \text{ GeV/c}$ (hydrodynamic flow, hadron rescattering)

Baryon/meson grouping at $p_T > 2$ GeV/c (recombination/coalescence), Number of constituent quark (NCQ) scaling

Beam-Energy Dependence of Elliptic Flow (v₂)

Small change in v_2 for inclusive charged hadrons as the collision energy changes by a factor ~ 400 (from 7.7 GeV to 2.76 TeV) and initial energy density changes by nearly a factor of 10.

Different picture for identified hadrons?

Goal of this analysis:

- 1) Differential measurements of $\rm v_2$ and $\rm v_3$ for identified charged hadrons for Au+Au collisions at 200 GeV.
- 2) Detailed comparison between top RHIC and LHC energies.

The STAR detector at RHIC

Time Projection Chamber (TPC):

- Tracking of charged particles with $(|\eta| < 1, 2\pi \text{ in } \phi)$
- PID using dE/dx measurements

Time-Of-Flight (TOF):

- $|\eta| < 0.9, 2\pi \text{ in } \phi$
- PID using time-of-flight information

Event planes:

TPC ($|\eta| < 1$), BBC (3.8 $< |\eta| < 5.2$)

Data set:

Au+Au at
$$\sqrt{s_{NN}} = 200 \text{ GeV}$$

Particle identification

TPC

Particle identification via specific ionization energy loss (dE/dx).

Pion and kaon identification up to $p\sim0.55$ GeV/c. Proton identification up to $p\sim1.1$ GeV/c.

TOF

Particle identification up to p=2.5 GeV/c using time-of-flight information.

Analysis technique: Event Plane Method (EP)

TPC(E) TPC(W)

BBC(E)

-5.2 < η < -3.8 -1 < η < -0.05 0.05 < η < 1

BBC(W)

 $3.8 < \eta < 5.2$

East BBC/TPC half
$$(\eta < 0) \rightarrow \eta_{-}$$

West BBC/TPC half $(\eta > 0) \rightarrow \eta_{+}$

$$v_{n} = \frac{\left\langle \cos\left[n\left(\varphi_{\eta\pm} - \Psi_{n,\eta\mp}\right)\right]\right\rangle}{\sqrt{\left\langle\cos\left[n\left(\Psi_{n,\eta+} - \Psi_{n,\eta-}\right)\right]\right\rangle}}$$

Systematic uncertainty for V_n :

- FP resolution 2-sub vs. 3-sub event methods
- Difference between results for TPC and BBC EP
- Difference between the EP and Scalar Product (SP) methods

Event plane resolution

Good agreement between 2-sub & 3-sub event methods

v₂ TPC vs. BBC event plane

Good agreement for V_2 results obtained using EP from TPC and BBC.

v₂(p_T) for identified hadrons

Strong centrality dependence of $v_2(p_T)$

v₃(**p**_T) for identified hadrons

Weak centrality dependence of $v_3(p_T)$

v₂(p_T) for identified hadrons

Mass ordering for $p_T < 2$ GeV/c and baryon/meson grouping for $p_T > 2$ GeV/c

v₃(**p**_T) for identified hadrons

Mass ordering for $p_T < 2$ GeV/c and baryon/meson grouping for $p_T > 2$ GeV/c

v₂ quark number scaling

$$k E_T \equiv m_T - m_0, m_T^2 = m_0^2 + p_T^2$$

Expected scaling behavior for V_2 of identified hadrons

v₃ quark number scaling

$$k E_T \equiv m_T - m_0, m_T^2 = m_0^2 + p_T^2$$

Expected scaling behavior for V_3 of identified hadrons

v_2 , v_3 of identified hadrons for Pb+Pb at $\sqrt{s_{NN}}$ =2.76 TeV (ALICE)

Comparison of v_2 results for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV with Pb+Pb at $\sqrt{s_{NN}}$ =2.76 TeV (ALICE)

- ✓ For pions $v_2(p_T)$ varies with $\sqrt{s_{NN}}$ very similarly to the total charged hadron $v_2(p_T)$.
 - \checkmark For protons the strong radial flow "blueshifts" the entire flow signal to higher p_T .

v₂ of identified hadrons from RHIC to LHC (viscous hydrodynamics)

Chun Shen and Ulrich Heinz, Phys. Rev. C 85, 054902(2012), VISH2+1 model calculations

- ✓ For pions $v_2(p_T)$ varies with $\sqrt{s_{NN}}$ very similarly to the total charged hadron $v_2(p_T)$.
 - \checkmark For protons the strong radial flow "blueshifts" the entire flow signal to higher p_T .

Comparison of v_3 results for Au+Au at $\sqrt{s_{NN}}$ = 200 GeV with Pb+Pb at $\sqrt{s_{NN}}$ =2.76 TeV (ALICE)

- ✓ For pions $v_3(p_T)$ varies with $\sqrt{s_{NN}}$ very similarly to the total charged hadron $v_3(p_T)$.
 - \checkmark For protons the strong radial flow "blueshifts" the entire flow signal to higher p_T .

Summary & Outlook

Results of (p_{T_1} centrality)-differential elliptic (v_2) and triangular (v_3) flow measurements of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV are presented.

> Strong centrality dependence of $v_2(p_T)$ and weak dependence of $v_3(p_T)$.

ICNFP Crete 2020

- \triangleright Mass ordering for $p_T < 2$ GeV/c and baryon/meson grouping for $p_T > 2$ GeV/c.
- Approximate NCQ scaling holds.

Detailed comparison between these results at top RHIC energy and ALICE results for Pb+Pb collisions at $\sqrt{s_{_{NN}}}$ = 2.76 TeV (ALICE, JHEP 1609 (2016) 164) shows that

- For $p_T < 1.0$ GeV/c the charged pion $v_{2,3}(p_T)$ rise with increasing $\sqrt{s_{NN}}$ very similarly to the total charged hadron $v_{2,3}(p_T)$ and show little change for $p_T > 1.0$ GeV/c.
- For protons the strong radial flow at LHC "blueshifts" the entire flow signal $v_{2,3}(p_T)$ to higher p_T and for LHC the $v_{2,3}(p_T)$ values are smaller in the low p_T region.

Thank you for your attention

Backup

Event plane resolution

Good agreement between 2-sub & 3-sub event methods