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Introduction

• Traditional machine learning (ML) methods like boosted decision trees (BDTs) have

been used for many years in HEP, typically for classification and regression tasks.

• Variety of BDTs used in the discovery of the Higgs boson:

Phys. Lett. B 716 (2012) 30

• Recently, deep learning (DL) has shown great promise in multiple applications:

1. Improving the performance of classification and regression tasks.

• Examples: jet flavor classification and jet energy regression.

2. Automating tasks typically done “by hand” or optimizing solutions to problems

that have been traditionally solved with deterministic algorithms.

• Examples: data quality monitoring with deep autoencoders, using DL for

charged track reconstruction or particle flow.

Machine Learning in CMS

• Which tasks in HEP benefit most from the use of ML?

• Which ML algorithms provide the best solutions?
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Outline

1. Deep learning: where and why?

• Where can we expect DL to provide an advantage over “traditional” ML

methods (e.g. BDTs)?

• What are the challenges and risks associated with DL?

2. Improving physics performance in CMS

• Which CMS analyses have benefitted substantially from extensive use of ML?

• Collaboration-wide tools: DNN-based jet flavor algorithm

• Analysis-specific algorithms: broad survey of ML in CMS & focus on

measurements of the Higgs boson’s properties in the H → γγ channel

3. Future prospects & conclusions

• What are the promising applications of ML in Run 3 of the LHC and beyond?

• Searching for new physics with representation learning

• DL for charged track reconstruction and particle flow
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Deep learning: where and why?

• Where can we expect DL methods to provide a significant advantage over

“traditional” ML methods (e.g. BDTs)?

• To date, one of the most successful

applications of DL in CMS is jet flavor

classification:

• DeepCSV algorithm

(JINST 13 (2018) P05011)

• Jet flavor identification: use variables

describing a jet’s kinematics, constituent

particles, and secondary vertices to

identify the quark flavor from which a jet

originates.

• Deep neural networks (DeepCSV)

provides a huge increase in performance

over likelihood-based methods (JP).
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Deep learning: where and why?

• Why does DL provide such an improvement in the task of jet classification?

• First, a hand-wavy argument. Later I will argue more rigorously in studies of

DNNs used in first single-channel observation of t̄tH .

1. Low-level features

• DNNs excel in domains where forming high-level representations is difficult to

do manually.

• Example: facial recognition in images

• Can form high-level “summary” variables of a jet, but lose some of the original

information!

• Successors of DeepCSV, such as DeepFlavour, use even lower-level training

inputs (full lists of particle flow candidates, secondary vertices) and achieve

even better performance.

2. Large number of training events

• DNNs are notoriously subject to overfitting and poor generalization – typically

only an issue in the case of limited training cases.
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Pitfalls of DL: Domain Adaptation

• DNNs seem great, why don’t we train on the lowest-level input features

possible for every classification and regression task?

• Typically, ML algorithms in HEP are trained on simulation but applied on actual

data. Problematic because:

1. Simulations of the underlying physics are not perfect!

2. Simulations of detector responses are not perfect!

• Blindly applying DNNs may be suboptimal:

• Discriminants likely show disagreement between data and simulation.

• Large systematic uncertainties associated with this difference =⇒
degrade analysis sensitivity.

• A potentially more responsible approach:

• Rather than feeding all possible low-level features to a DNN is using

high-level “summary” features which can be studied individually and

better understood.

• More formally, this is known as the problem of domain adaptation: arXiv:1409.7495
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https://arxiv.org/abs/1409.7495


Addressing Domain Adaptation

• Can we directly address the problem of domain adaptation?

• CMS analysis searching for new long-lived particles decaying to jets uses a jet

classification DNN which builds upon the DeepJet algorithm:

Submitted to Machine Learning: Science and Technology.

• Loss function introduces a domain

adaptation component in addition to

classification component.

• DNN predicts not 1, but 2 labels per jet:

• Jet flavor (as in DeepJet)

• Whether the event is from

simulation or data

• A gradient reversal layer discourages the

DNN from learning features which allow

it to distinguish between jets in data and

simulation.
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Addressing Domain Adaptation

• Can we directly address the problem of domain adaptation?

• Does domain adaptation component improve data/MC agreement?

• Yes! Moreover, systematic uncertainties on the classifier’s output are decreased.

• Performance training with DA component is comparable to training without!
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Improving physics performance in CMS

• Where have ML algorithms provided significant improvement to the quality

of physics results delivered by CMS?

• Survey of ML in CMS: broad overview of applications of ML in CMS

• Non-exhaustive list – far too many successful applications of ML in CMS to

cover in a single talk!

• Case study: focus on measurements of the properties of the Higgs boson in the H

→ γγ decay channel:

1. First single-channel observation of t̄tH production in H → γγ:

2. Measurements of Higgs boson properties in the diphoton decay channel:
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DNN for Tau Identification

• Eur. Phys. J. C 80 (2020) 189

• Train a DNN “DeepPF” with information about the

constituent particles inside a ∆R < 0.5 cone around

jet in order to identify hadronic taus, τh.

• Features for each particle include pparticle
T /pjet

T ,

∆R(particle,τh), track quality information, impact

parameter, etc.

• Trained on simulation, with signal taken as jets

matched to a τh, background taken as jets from

multi-jet and W+jets events.
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H → cc Tagging

• JHEP 2003 (2020) 131

• Search for H → cc decays using large-R (∆R < 1.5)

jets.

• Also featured in 10.1088/1748-0221/15/06/P06005.

• DNN trained on large-jet constituent particles and

secondary vertices, using 1D CNN.

• Special focus on boosted (pT ≥ 200) H → cc events,

which are more likely to contain both c quarks within

the large-R jet.

• Observed (expected) upper limit on σVH × B(H→ cc)

of 70 (37) times SM expectation.
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Heavy object tagging with DNNs

• 10.1088/1748-0221/15/06/P06005

• Variety of ML solutions to the problem of heavy-object

(t, W, Z, H) tagging, including comparison with

standard methods.

• 2D CNN approach to top-tagging through

representing the jet as an image.

• Different analyses have different needs:

• Train mass-decorrelated version of jet taggers for

analyses which wish to use mass differences

between signal and background directly.

• NN predicts soft-drop mass and is penalized for

accuracy =⇒ learn to distinguish jets without

using mass information.

ImageTop Network

Mass-decorrelated jet tagger

architecture
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DNN for b-jet energy regression

• arXiv:1912.06046

• DNN trained to simultaneously estimate the energy &

uncertainty of b-jets.

• Trained with jet kinematics, information about

event pileup & energy density, constituent

particles of the jet, etc.

• Custom loss function allows for estimation of

25th and 75th percentile energy values as well.

• Significant improvement over baseline method

(correction factors derived from momentum balance in

di-jet, γ/Z + jet events).
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Data quality monitoring with DL

• arXiv:1808.00911

• DQM traditionally framed as supervised classification

problem: “normal” vs. anomalous detector

performance.

• Deep autoencoders are trained on image-like

representations of the muon drift tube occupancy

plots.

• Autoencoder approach offers several benefits:

• Global approach: don’t simply predict normal vs.

anomalous, but localize the origin of the

anomaly.

• Previous algorithms produce a chamber-wise

goodness estimate, while autoencoder approach

can point to a specific problematic layer.

• Performance gains over previous statistical

algorithms, especially in the case of low-stats

(i.e. beginning of data taking).

Convolutional Autoencoder

architecture
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Observation of t̄tH (H → γγ)

Overview of analysis strategy for first single-channel observation of t̄tH production:

Phys. Rev. Lett. 125, 061801 (2020)

• Preselection: Select for two high pT , isolated photons

and additional jets and leptons from top decays.

• Split into two orthogonal channels: hadronic (0

leptons) and leptonic (≥ 1 leptons).

• MVAs: for each channel, construct an MVA,

“BDT-bkg”, trained to separate t̄tH (H→ γγ) from

relevant SM backgrounds.

• MVAs trained on simulation of backgrounds but

applied on data =⇒ challenges with domain

adaptation.

• Signal Strength Extraction: cut on MVA score to

define signal regions in each channel, constrain µt̄tH

through simultaneous fit in all signal regions to the

diphoton invariant mass spectrum (mγγ).
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BDT-bkg

• For each channel train a binary classification BDT (“BDT-bkg”) to distinguish

between t̄tH and other SM processes.

• Signal: simulation of t̄tH

• Background: simulation of γγ + jets, t̄t + up to 2 photons, Z + γ, W + γ, etc

and data-driven description of multi-jet and γ + jets.

• Features shown in red are

inputs only to the Hadronic

channel BDT-bkg, features

shown in blue are inputs

only to the Leptonic channel

BDT-bkg.

• Limited description of

photon/diphoton kinematics

to prevent BDT from

learning mγγ .

Input Features to BDTs

Category Features

Photon Kinematics

γ1 pT /mγγ γ1 η γ1 Pixel Seed Veto

γ2 pT /mγγ γ2 η γ2 Pixel Seed Veto

Max γ ID MVA Min γ ID MVA

Jet Kinematics

Jet 1 pT Jet 1 η Jet 1 b-tag score

Jet 2 pT Jet 2 η Jet 2 b-tag score

Jet 3 pT Jet 3 η Jet 3 b-tag score

Jet 4 pT Jet 4 η Jet 4 b-tag score

Max b-tag score 2nd max b-tag score

Njets HT

DiPhoton Kinematics
p
γγ
T /mγγ Yγγ | cos(∆φ)γγ |
∆Rγγ | cos(helicity angle(θ))|

Lepton Kinematics lepton pT lepton η Nleptons (tight ID)

Event-level Kinematics Emiss
T
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Data-Driven (γ) + jets Description

• Challenge: multi-jet and γ + jets events are main backgrounds (> 50%) in the

hadronic channel preselection, but poorly described by simulation.

• Solution: replace their simulation description with a data-driven description.

• Addressing problem of domain adaptation.

• Use events which fail the preselection cut on photon

ID: “low photon ID sideband”.

• Low photon ID sideband dominated (> 95%) by

multi-jet and γ + jets events.

• Replace minimum photon ID score for each event with

a new value generated from a pdf for the photon ID of

fake photons.

• Scale normalization appropriately and use in place of

simulation samples.

• Improves MVA performance =⇒ ∼5% improvement in expected significance for

hadronic channel.
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DNNs for Specific Backgrounds

• Each event is summarized into a set of ( high-level input features ) – these form the basis

for BDT training.

• Some information is lost in summarizing.

• Can we exploit directly the low-level information in each event with a DNN?

• Low-level information: four vectors of leading 8 jets and leptons.

• Consider jets and leptons as 1d sequence

and use LSTM architecture.

• But, DNN only outperformed BDT when

enough training events were available

(≥≈ 100k).

• Train DNN on high-stats samples (t̄tH vs.

t̄t + γγ, t̄tH vs. γγ+jets) and use as

additional input features to BDT.

• Improves MVA performance =⇒ ∼5%

improvement in expected significance for

hadronic channel.
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t̄tH(H → γγ): Results

• Observation of t̄tH production recently announced by CMS, using combination of

multiple channels and Run 1 + Run 2 data [1].

• CMS [2] and ATLAS [3] recently announced measurements of signal strength and CP

structure of t̄tH in the H→ γγ decay channel.

signal strength = µt̄tH =
σobs

t̄tH

σSM
t̄tH

(1)

Summary of recent t̄tH results

Result L (fb−1) Obs. Signal Strength (µt̄tH) Obs. (Exp.) Significance Obs. (Exp.) CP-Odd Exclusion

CMS [2] 137 1.38
+0.36
−0.29 6.6 (4.7) σ 3.2 (2.6) σ

ATLAS [3] 139 1.4 ± 0.4 5.2 (4.4) σ 3.9 (2.5) σ

• O(5%) improvements from domain adaptation (e.g. data-driven γ + jets

description) and DL (e.g. DNNs targeting specific backgrounds) contribute to the

analysis’s competitive sensitivity.

[1] CMS Collaboration, “Observation of t̄tH Production.” Physical Review Letters 120.23 (2018)

[2] CMS Collaboration, “Measurements of tt̄H production and the CP structure of the Yukawa interaction between the Higgs boson and

top quark in the diphoton decay channel”, Phys. Rev. Lett. 125, 061801 (2020).

[3] ATLAS Collaboration, “Study of the CP properties of the interaction of the Higgs boson with top quarks using top quark associated

production of the Higgs boson and its decay into two photons with the ATLAS detector at the LHC”, Phys. Rev. Lett. 125, 061802

(2020).Samuel May (UCSD) Machine Learning in CMS (September 3, 2020) 23



Measurements of Higgs boson properties in H → γγ: Top
DNN

• The magnitude top Yukawa coupling yt can be constrained through measurements of

the t̄tH cross section.

• But, not sensitive to the sign of yt.

• Studying tHq production allows us to constrain the sign as well: tHq production

cross section greatly enhanced if yt = −ySM
t .

• CMS-PAS-HIG-19-015 employs dedicated signal

regions for both ttH and tHq.

• Similar final states between these two processes

make them very difficult to distinguish

experimentally.

• Dedicated “Top DNN” is trained to separate

between ttH and tHq.

• Same architecture as DNNs used in

t̄tH analysis.

• Shown to significantly outperform a BDT

trained for the same task.
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Measurements of Higgs boson properties in H → γγ:
Results

• Upper limit on cross section for Higgs boson production in association with a single

top quark is constrained to 12 times the SM prediction at 95% CL.
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Future Prospects

1. Detector reconstruction with graph neural networks (GNNs): Eur. Phys. J. C, 79 7 (2019) 608

• Although detector components like calorimeters bear much similarity to images, their

irregular geometry provides limitations to approaches using convolutional neural networks

(CNNs).

2. Implementation of DNNs on firmware (FPGAs) for trigger application – reduction of

backgrounds, trigger rate: JINST 13 P07027 (2018)

3. Variety of solutions to trackML kaggle challenge: NeurIPS ’18 Competition

4. Particle reconstruction with GNNs: arXiv:2003.11603

• Combine information from calorimeters, tracker, and muon system to produce a list of

candidate particles in each event.

5. Anomaly detection with variational autoencoders (VAEs): J. High Energ. Phys. (2019) 2019: 36

• Search for new physics with a model-agnostic approach: VAE creates a lower-dimensional

“latent” representation of each event =⇒ new physics would present itself as an outlier

among the SM distribution in the latent space.

• Disclaimer: not explicitly CMS results, though many CMS members are involved.
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Conclusion

• Recent results from CMS demonstrate the power of advanced ML methods like deep

learning with an increasing number of DL algorithms being employed.

• Case study: measurements of Higgs boson properties in the H→ γγ channel

benefit from a wide variety of ML methods, including many DL algorithms

• Significant improvements to analysis sensitivity brought through these

developments.

• Deep learning tends to provides an advantage over “traditional” ML algorithms like

BDTs in the regimes of (1) large number of training events and (2) absence of easily

constructable high-level summary features.

• However, deep learning presents challenges:

• Problem of domain adaptation: labeled events are often only available in

simulation. Differences between data and simulation can then result in

discrepancies between algorithms’ behavior on simulation and data.

• A variety of innovative solutions to typical problems in HEP are currently

underway, showing promise to improve physics results in Run 3 and beyond.
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Backup
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Photon ID in H → γγ
• Two recent H→ γγ results from CMS each utilize a photon ID BDT trained to

separate between “prompt” and “fake” photons.

• Observation of t̄tH production: Phys. Rev. Lett. 125, 061801 (2020)

• Measurements of Higgs boson properties in diphoton decay channel:

CMS-PAS-HIG-19-015

• “Fake” photons are hadronic jets which are

misidentified as photons (mainly π0 → γγ).

• Inputs include shower shape variables, isolation

variables, etc. List here ).

• However, shower shape variables are not

perfectly modeled in simulation.

• Need for domain adaptation: correct input features

with a chained quantile regression (CQR) method:

10.1007/s10994-016-5546-z.

• Set of BDTs which morph the CDFs of shower

shape variables in simulation to match those in

data. Good agreement observed post-CQR!
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Photon ID MVA

• Inputs to the photon ID MVA include: (red = endcap only)

1. Full 5x5 R9

2. Full 5x5 σiηiη
3. η width

4. φ width

5. Covariance (iηiφ)

6. S4 ratio (E2x2 / E5x5)

7. PF Photon Isolation

8. Charged isolation wrt chosen vertex

9. Charged isolation wrt worst vertex

10. Photon supercluster η

11. Photon supercluster E

12. ρ

13. ES effective sigma (preshower spread)

14. ES energy / supercluster raw energy
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