

Future Physics with the CMS Experiment

A.Savin
University of Wisconsin, Madison, USA

ICNFP 2020, Kolymbari, Crete, Greece September 04-12, 2020

High Luminosity LHC project

- The HL-LHC will extend the LHC program to the second half of the 2030s with pp collisions at 14 TeV with an integrated luminosity of 3 ab⁻¹, and PbPb and pPb collisions with integrated luminosities of 13 nb-1 and 50 nb-1, respectively
- The HL-LHC will rely on a number of key innovative technologies: cutting-edge 11-12 Tesla superconducting magnets, superconducting crab cavities, new beam collimation, etc.
- Goal is to achieve instantaneous luminosities a factor of five larger than the LHC nominal value

Summary of the CMS Phase-2 upgrade

Physics at the HL-LHC

Recently summarized in CERN Yellow Report on the Physics at the HL-LHC, and Perspectives for the HE-LHC (2019)

https://cds.cern.ch/record/2703572

Snowmass 2021 has been just started

https://snowmass21.org

This talk will present selected topics on

- Higgs Physics
- SM Physics (not Higgs)
- Beyond SM Physics

Both CMS and ATLAS collaborations demonstrated very similar physics programs for the HL-LHC, but this talk presents only selected CMS results!

Assumptions for CMS Future analyses

The HL-LHC physics analyses use different techniques based on simulated MC samples:

- Full simulation of the Phase-2 detector response;
- DELPHES, parametrization of detector response;
- Projections of existing Run 2 results;
- Combination of above.

Uncertainties:

- The theoretical uncertainties are assumed to be reduced by a factor of two;
- The intrinsic statistical uncertainty reduced by a factor $1/\sqrt{L}$;
- Detector systematics left unchanged, or revised according to detailed simulation;
- Uncertainties on methods are kept at the same value as in the public results;
- The uncertainty in the integrated luminosity reduced down to 1% (currently 2.5%)20

Higgs measurements at the HL-LHC

- HL-LHC as a Higgs factory
 - High Precision measurements:
 - Mass and width
 - Cross sections
 - Couplings
 - HH and Higgs self-coupling
 - BSM Higgs searches

Few recent CMS Higgs results

CMS-PAS-HIG-19-001

m_{4l} (GeV)

CMS-PAS-HIG-18-029

CMS-PAS-HIG-19-006

First evidence of the Higgs boson decay to a pair of muons. CMS-PAS-HIG-19-010

Measurement of Higgs boson decay to a pair of taus.

Precision of the Higgs cross section

CMS-PAS-FTR-18-011

300 fb⁻¹ corresponds to the total LHC luminosity before the HL-LHC or to 1 year of the HL-LHC

The expected $\pm 1\sigma$ uncertainties **per-decay-mode** on signal strength parameters

• with Run 2 systematic uncertainties 9/3/20 With YR18 systematic uncertainties

Precision of the Higgs cross section

CMS-PAS-FTR-18-011

300 fb⁻¹ corresponds to the total LHC luminosity before the HL-LHC or to 1 year of the HL-LHC

The expected $\pm 1\sigma$ uncertainties **per-production-mode** on signal strength parameters

- with Run 2 systematic uncertainties
- WithYR18 systematic uncertainties

Higgs boson couplings

$$(\sigma \cdot \mathrm{BR}) (\mathrm{gg} \to \mathrm{H} \to \gamma \gamma) = \sigma_{\mathrm{SM}} (\mathrm{gg} \to \mathrm{H}) \cdot \mathrm{BR}_{\mathrm{SM}} (\mathrm{H} \to \gamma \gamma) \cdot \frac{\kappa_{\mathrm{g}}^2 \cdot \kappa_{\mathrm{H}}^2}{\kappa_{\mathrm{H}}^2}$$

https://arxiv.org/pdf/1307.1347.pdf

Production mode

$$\frac{\Gamma_{\mathrm{WW}^{(*)}}}{\Gamma_{\mathrm{WW}^{(*)}}^{\mathrm{SM}}} = \kappa_{\mathrm{W}}^{2}$$

$$\frac{\Gamma_{\mathrm{ZZ}^{(*)}}}{\Gamma_{\mathrm{ZZ}^{(*)}}^{\mathrm{SM}}} = \kappa_{\mathrm{Z}}^{2}$$

CMS-PAS-FTR-18-011

HH production and Higgs self-coupling

Channel	Signific Stat. + syst.		95% CL limit on $\sigma_{HH}/\sigma_{J}^{2}$ Stat. + syst. Stat. onl	
bbbb	0.95	1.2	2.1	1.6
$bb\tau\tau$	1.4	1.6	1.4	1.3
$bbWW(\ell\nu\ell\nu)$	0.56	0.59	3.5	3.3
$bb\gamma\gamma$	1.8	1.8	1.1	1.1
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5
Combination	2.6	2.8	0.77	0.71

The most sensitive channel is $H(bb)H(\gamma\gamma)$

Alternative approach: exploiting **radiative corrections** to inclusive and differential Higgs boson production.

CMS-PAS-FTR-18-020 $ttH(\gamma\gamma)$

Higgs beyond SM

Rare decays, Higgs to invisible, CMS-PAS-FTR-18-016

MSSM Higgs, CMS-PAS-FTR-18-040

Significant extension of the currently excluded regions or discovery

SM at the HL-LHC

- Precise measurements (new methods + syst + stat)
 - Top mass, top properties
 - Weak mixing angle measurement
- Measurements with low cross sections
 - Top Flavor Changing Neutral Current
 - VV VBS and polarized cross sections

Top Mass

- CMS-PAS-FTR-16-006, CMS-TDR-17-014
- Top quark mass fundamental SM parameter
- Different measurement methods: I+jets mass, single top, track- and vertex-based distributions, the " J/ψ " method, cross section

- " J/ψ " method should benefit from statistics + reco
- Moderate improvement for other methods

Rare SM signatures

4 top production, CMS-PAS-FTR-18-031

Int. Luminosity	Stat. only	Run 2	YR18	YR18+
300fb^{-1}	4.09	2.71	2.85	2.93
$3~\mathrm{ab^{-1}}$	12.9	3.22	4.26	4.49

rare $B \rightarrow \mu^+\mu^-$ decays, CMS-PAS-FTR-18-013

\mathcal{L} (fb ⁻¹)	$N(B_s)$	$N(B^0)$	$\delta \mathcal{B}(B_s \to \mu \mu)$	$\delta {\cal B}(B^0 o \mu\mu)$	$\sigma(B^0 o \mu\mu)$
300	205	21	12%	46%	$1.4 - 3.5\sigma$
3000	2048	215	7%	16%	$6.3 - 8.3\sigma$

FCNC processes in top production

CMS-PAS-FTR-18-004

Flavour-changing neutral currents (FCNC) are absent at lowest order in the SN FCNC couplings of the top quark are predicted to be very small $<10^{-10}$

VV VBS and polarized cross section

WZ production, CMS-PAS-FTR-18-038

ZZ production, CMS-PAS-FTR-18-014

VV VBS and polarized cross section

 The total vector boson scattering is composed of three components, depending on the polarization of the final-state vector bosons: both of them being longitudinally polarized (LL), both of them being transversely polarized (TT), and the mixed case (LT).

WW production, CMS-PAS-FTR-18-005

WZ production, CMS-PAS-FTR-18-038

ZZ production, CMS-PAS-FTR-18-014

Beyond SM:

- Nothing new discovered so far ...
- Model-specific
 - SUSY
 - Leptoquarks
- More general
 - Search for high-mass resonances
- Dark matter

SUSY

Statistics will allow to explore compressed spectra suffering from low statistics and high systematics today

20

Leptoquarks

Leptoquarks carry both baryon and lepton quantum numbers

and carry fractional electric charge.

Search for tt resonances

Many models of NP predict heavy resonances with enhanced couplings to the third generation of fermions - top quark pair production to search for the presence of heavy resonances.

Heavy resonances

New heavy gauge bosons are predicted by various extensions of the SM

Dark matter photons

Many NP models predict long-lived particles - a large distance from the primary pp collision - search for displaced muons that emerge from the decay of long-lived particles.

CMS-PAS-FTR-18-002

Conclusions

- The HL-LHC will allow to repeat many important measurements with significantly improved precision
- To explore new processes with extremely low cross sections and branching fractions, hopefully to find NP
- A lot of physics studies for the HL-LHC were done already and summarized in the CERN Yellow Report, new activities are already ongoing

More Higgs precision measurements

CMS-PAS-FTR-18-011

Differential Higgs cross sections

Direct and indirect Higgs width measurement

Effective mixing angle via forw.-backw. asymmetry

Vector and axial-vector couplings in NC annihilation

arXiv:1806.00863

$$q\bar{q} \to Z/\gamma^* \to \ell^+\ell^-$$

Differential cross section

$$\frac{d\sigma}{d(\cos\theta)} = \frac{4\pi\alpha^2}{3\hat{s}} \left[\frac{3}{8} A(1 + \cos^2\theta) + B\cos\theta \right]$$

$$A_{\rm FB} = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$$

Fit to A_{FB} to measure weak mixing angle, indirect measure of m_{W}

