

Hide Oide (Tokyo Tech) on behalf of the ATLAS Collaboration

Tokyo Tech

Long-lived particles

- New particle search is not a guaranteed science anymore, but it is not the end.
 - \star It's the era to ask how we could discover a new one.
- ★ LLP is one direction to expand the new particle search capability, and it sounds like a sense!
 - ★ Very distinctive **signatures** low BGs.
 - → Sensitivity increases linearly wrt. integrated luminosity.
 - \rightarrow Can profit future lumi increase much.
 - ★ Despite experimentally feasible with or without existing facilities, it's not very matured field yet.
 - \rightarrow Room of **creativity**.
 - ★ Theoretically **motivated** models.
 - History: experimental particle physics dawn has started from finding LLPs!

Mechanisms of long lifetime

Analogous situations may be found in SM...

★ Scale hierarchy

- ★ Degeneracy
- \star Rules
- ★ Coupling
- ★ Phase space

Charged Pion

$$\Gamma \sim g_W^2 \left(\frac{m_\pi}{M_W}\right)^4 m_\pi$$

Neutron

$$\Gamma \sim g_W^2 \left(\frac{m_n - m_p}{M_W}\right)^4 (m_n - m_p)$$

Why not BSM may have similar features?

LLP General: on the LLP Production

Quite many LLP models exist, but...

An LLP has a very narrow decay width.

 \rightarrow Production with the same vertex as the decay should be suppressed.

Drell-Yan LLP production isn't good!

Meanwhile pair-production or cascade decay production are feasible.

LLP General: Geometry and lifetime

LLP General: Background estimation

- ★ Background events are mostly instrumental.
 - Cosmic rays, beam-induced backgrounds or fake objects.
- ★ MC isn't reliable / unavailable.
 Data-driven estimation is necessary.
- ★ Many analyses use "ABCD method" in the background estimation.
 - ★ Allocate two orthogonal variables classifying signal and background.
 - ★ As long as orthogonality of the two variables is secured:

$$F_{\rm BG}(x, y) = f(x) \cdot g(y)$$

Accelerator LLP searches landscape

Magnetic monopole search

EXOT-2017-20 / PRL 124 (2020) 031802

Aim: test for Dirac's description of magnetic monopole.

$$q_m = Ng_D ec$$
 where $g_D = (2\alpha_e)^{-1} \simeq 68.5$

→ Stable monopoles produced in LHC has $\sim 5,000 \times$ more ionization loss than MIP!!

Striking Signature:

- Many of TRT (straw tube) high-threshold hits
- Non-showering sharp EM calo cluster

Trigger:

- Dedicated HLT seeded from $E_{\rm T}$ > 22 GeV L1 electron trigger.
- Presence of many $\gtrsim 6 \text{ keV TRT}_{(Xe)}$ hits in a narrow 10 mrad wedge.

Also side note: Monopole MC simulation is peculiar:

- Acceleration inside solenoid.
- \bullet Enormous ionization and $\delta-{\rm ray}$ productions along track
- Deceleration of monopole in EM calo (and many stop inside it)
- Instead of $1/\beta^2$ "Bethe–Bloch" formula, $\log \beta^2$

For monopole $|g| = g_D$: - L1 eff. 55% - HLT eff: 25-60% (after L1)

Magnetic monopole search

EXOT-2017-20 / PRL 124 (2020) 031802

Fraction of high-threshold TRT hits along the road

Mid

- \star 2 quasi-orthogonal variables based on TRT and EMCalo.
- ★ Bkg estimation: data-driven ABCD method, assigning η -dependent 10% correlation as systematic uncertainty.

Bkg Prediction: $0.2 \pm 0.11_{\text{stat.}} \pm 0.40_{\text{sys.}}$ evts.

Magnetic monopole search

Bkg Prediction: $0.2 \pm 0.11_{\text{stat.}} \pm 0.40_{\text{sys.}}$ evts.

- \star Zero events observed in SR.
- * Limits presented in the scenario of Drell-Yan monopole and high–|z| production models for scalar and fermion respectively.

Monopole signal MC

- $|g| = 1g_D$ scalar monopole excluded up to 1850 GeV.
- ~5x improvement to the ATLAS Run1 result.
- Sensitivity comparable to MoEDAL.

Mid

Run

Displaced vertices with muons

<u>SUSY-2018-33</u> PRD 102 (2020) 032006

Benchmark model: A tiny RPV coupling would make stop alive for O(1ns)

Full

Runz

Signal DV: r > 4 mm, $\geq 3 \text{ tracks}$, $m_{vis} > 20 \text{ GeV}$ and isolated non-prompt muon (decent cosmic ray veto)

Resembling BGs: cosmic, b-jets, instrumental fakes

<u>SUSY-2018-33</u> PRD 102 (2020) 032006

 $\lambda_{\rm UDE}^{\prime\prime}$

Q

 $\tilde{\chi}^{0}_{1,(\text{LLP})}$

For DV+ μ : around 20-30% of the signal efficiency recovery.

★ For full Run-2 DV analyses: a significant improvement in the vertex reconstruction algorithm in enriching vertex properties of multiplicity and mass.

Attached Tracks

Displaced vertices with muons

- * MET or displaced muon trigger; exclusive 2 SRs. Cosmic ray veto + hadronic interaction veto.
- ★ Robust data-driven background estimation for 3 exclusive categories (transfer factor from CR to SR for each of cosmic, heavy-flavor, fake Bkg components)
- \star SR yields are consistent with background estimation.
- **\star** Excluding stop mass up to **1.75** TeV around ~0.1 ns lifetime.

<u>SUSY-2018-33</u> PRD 102 (2020) 032006

Displaced vertices with muons

- Displaced objects are tricky to summarize object's reco/selection efficiency due to relatively drastic change of them depending on the decay position/direction.
- We have established a scheme to parameterize those such that they are useful and accurate^(*) for reinterpretation works outside the collaboration. The present scheme is appreciated by relevant theorists' community.
- ★ DV+mu analysis also followed this scheme, <u>HepData</u> and <u>document</u> <u>released</u> on paper publication.
- ★ More details of this scheme reviewed here.

(*) within a certain limitation of applicability

III.

Seeking light new LLPs

- * The target object (e.g. dark photon) is relatively light and highly boosted.
- ★ Signatures are collimated particles: collimated lepton appearances, displaced di-muon vertex, etc.
 - **★** For Heavy Neutral Lepton search, a prompt single lepton additionally required.
 - ★ For singlino, double prompt jets could be additionally required.

Displaced Heavy Neutral Lepton

- Heavy Neutral Leptons could explain SM neutrino masses, matter-antimatter asymmetry, and is a DM candidate.
- ★ The leptonic decay of SM W boson could yield long-lived HNL.
- Subsequent decay of HNL could yield di-lepton or semi-leptonic displaced vertex
- ★ Signal: Prompt- μ from primary vertex (trigger); DV contains exact opposite-sign 2 leptons: $\mu^+\mu^-$ and μ^+e^- .
 - Inclusive DV reconstruction using large-radius tracking
 - ★ 4 mm < r < 300 mm
 - ★ Cosmic-ray veto $\sqrt{(\Sigma \eta_{\mu})^2 + (\phi \Delta \phi)^2} > 0.04$
 - \star m_{DV} > 4 GeV

vid

EXOT-2017-26 / IHEP 10 (2019) 265

Displaced Heavy Neutral Lepton

- True dilepton DV (J/ψ , Υ , etc.) found to be negligible. X
- Bkg estimation: transfer factor from $0 \rightarrow 2$ leptons extracted from same-sign charge 2-trk DVs, then applied to the opposite-sign charge DVs.
 - \rightarrow estimated < 2.3 (90 % CL).

Mid

Runz

- \star Zero signal events observed in the SR.
- Unique sensitivity to HNL coupling strength in relatively \star low-mass region; complementary to the prompt HNL search.

CR plot (mixture of various triggers) inverting prompt lepton requirement

EXOT-2017-28 / EPJC 80 (2020) 450

Dark-photon jets search

- ★ A light (MeV—GeV) dark photon decays to lepton or light hadron pairs.
- ★ Collimated flow of displaced particles including leptons: dark-photon jets (DPJ).
- **★** Higgs portal to dark fermion pairs producing γ_d .
 - ★ Case1: $f_{d_2} \rightarrow f_{d_1} + \gamma_d$: up to 2µ / DPJ
 - ★ Case2: $f_{d_2} \rightarrow s_{d_1} + f_{d_1}$, $s_{d_1} \rightarrow \gamma_d \gamma_d$: up to 4µ / DPJ
- ★ Multiple DPJ types:

Mid

- ★ muonic DPJ (clean \geq 2 collimated muons)
- hadronic DPJ: a jet w/o muons, but CaloRatio required.
- ★ Dedicated trigger objects for DPJs
 - muon "narrow scan" trigger: the dedicated HLT for single-DPJ trigger.
 - ★ A 20 GeV L1 muon is confirmed as MS-only at HLT
 - ★ Ask for the 2nd MS-only muon (6—15 GeV) around the primary muon ($\Delta R < 0.5$).

Dark-photon jets search

- BDT-based signal/bkg classifier newly \star introduced : a major change from the prev. 2015 analysis.
 - µDPJ BDT: trained to separate signal from cosmic-ray MC
 - hadDPJ BDT: trained to separate signal from multijet MC
- 3 types of pairing:

Mid

- μDPJ μDPJ
- µDPJ hadDPJ
- hadDPJ hadDPJ
- Data-driven ABCD background estimation.
- ABCD vars: periphery tracks activity around DPJ and the opening angle between the two DPJs.

 $H \rightarrow 2\gamma_{d} + X$ **ATLAS**

√s=13 TeV

- FRVZ signal

--- cosmic dataset

0.2 0.4

0.6 0.8

μBDT

m_µ = 125 GeV

m, = 400 MeV

-0.8 -0.6 -0.4 -0.2 0

Fraction of DPJ

0.7

0.6

0.5

Data distribution

SR: µBDT > 0.21

Signal distribution

★ Observed bkg. yields are all consistent with the expectation.

Dark-photon jets search

★ Limits presented for 125 GeV higgs decay to $2\gamma_d$ and $4\gamma_d$ (400 MeV), and 800 GeV heavy higgs decay to $2\gamma_d$ (400 MeV).

Mid Nich

DVs in ID & MS

MS-DV

Mid NRUNZ

ID-DV

- ★ Another type of search: combination of DVs in different places: ID and MS.
- ★ ID-DV: $n_{trk} \ge 4$ and $m_{DV} > 3$ GeV
- ★ MS-DV
 - ★ Sufficient number of MDT hits (300—3000)
 - ★ >250 trigger chamber hits
 - ★ Isolation from $p_{\rm T} > 5$ GeV tracks $\Delta R > 0.3_{\rm barrel} / 0.6_{\rm endcap}$
- \star Isolation of DVs from jets and other event activities.
- ★ Angular distance between ID–DV and MS–DV. $\Delta R > 0.4$
- * ID-DV Bkgs: material interaction, fake trks, accidental crossing
- ★ MS-DV Bkgs: punch-through jets

DVs in ID & MS

MS-DV

Mid Run?

ID-DV

EXOT-2018-61 / Phys. Rev. D 101 (2020) 052013

- \star 1 vertex observed in SR
- **★** Prediction: $1.16 \pm 0.18_{(stat)} \pm 0.29_{(sys)}$
 - \rightarrow observation is consistent with Bkg.

Example limit for the case of $\Phi = H_{SM}$ for various scalar LLP masses.

LLP decays in HCal

- ★ A hidden-sector model: Heavier scalar $\Phi \rightarrow$ scalar LLPs $s \rightarrow$ fermion pairs each (Yukawa: the dominant decay is $b\bar{b}$)
- **★** Decay inside the tile calorimeter (1.8 m < r < 4 m):
 - **★** Energy fraction $E_{\rm H}/E_{\rm EM}$ is irregularly very large
 - \star The jet shape is much sharper than SM.
- ★ Dedicated triggers for tagging low EM fraction jets
 - ★ Lv1 trg: High- $E_{\rm T}$: $E_T > 60$ GeV in $\Delta \eta \times \Delta \phi = 0.2^2$ (33 fb⁻¹) Low- $E_{\rm T}$: isolated $E_{\rm T} > 30$ GeV in $\Delta R < 0.2$ (10.8 fb⁻¹)
 - **★** HLT: $\log_{10}(E_{\text{HCal}}/E_{\text{EMCal}}) > 1.2$

Main backgrounds:

Cosmic, multijets, non-collision beam-induced backgrounds

Mid

LLP decays in HCal

- ★ 2 sets of jet-level BDT are trained to distinguish Signal, beam-induced bkg (BIB), and QCD multijets.
 - **★** Optimized for high- $E_{\rm T}$ and low- $E_{\rm T}$ respectively.
 - Using a multi-layer perceptron (MLP) to make a regression on the decay position.
 - ★ BIB samples are event data in off-bunch-crossing.
- ★ 2 sets of event-level BDT are used to mainly distinguish Signal from BIB events.
 - ★ Effective to reduce QCD multijets as well.
 - ★ Low-mass case is fundamentally challenging.

EXOT-2017-25 / EPJC 79 (2019) 481

2019) 481

Event–level BDT (high– $E_{\rm T}$ case)

Mid

main data

A

 $\sum \Delta R_{min}$ (jet, tracks)

- ★ Bkg estimation: ABCD method using the BDT score and a jet-track isolation metric, $\sum \Delta R_{\min}$ (jet, trks) jets
- Observation in SR is consistent with estimated bkg.
- * Limits are presented in various sets of heavy scalar and LLP scalar masses (m_{Φ}, m_s) .

EXOT-2017-25 / EPJC 79 (2019) 481

Mid

Runz

LLP decays in HCal

- \star More systematic/automated re-interpretation using the RECAST framework is progressing within ATLAS
- ★ First application in LLP searches released.

Mid Run?

Stealth SUSY

- \star LLP searches are creative field in ATLAS new physics/particle searches.
- * Research requires vast special techniques ranging in the experiment.
 - ★ Trigger
 - ★ Reconstruction
 - ★ Data-driven estimation for unconventional backgrounds
- ★ Relatively clean signature.
 Search sensitivity will linearly grow with luminosity.
- ★ Most of the Full-Run2 results are yet released. Stay tuned for more new things to come.

LHC LLP Search Classes

Analogous situations may be found in SM...

★ Scale

- \star e.g. lifetime of π^{\pm} is determined by a large off-shellness $\Gamma \sim g_W^2 \left(\frac{m_{\pi}}{M_W}\right)^2 m_{\pi}$
- ★ Degeneracy
 - ★ e.g. neutron lifetime (~15 min) is related to "accidental" degeneracy of (u, d) quark masses and the gap to the EW scale $\Gamma \sim g_W^2 \left(\frac{m_n m_p}{M_W}\right)^4 (m_n m_p)$

★ Rules

- ★ Lepton flavor conservation: $\mu \rightarrow e\gamma$ almost forbidden in SM → Michel decay only.
- **\star** SUSY *R*-parity conservation: stable neutralino and proton (in the canonical SUSY)
- ★ Coupling
 - ★ If coupling involved in the decay process is very weak, lifetime gets longer.
- ★ Kinematic phase space
 - ★ e.g. $K_L \rightarrow 3\pi$ has longer lifetime than $K_S \rightarrow 2\pi$

Acceptance

PPNP 106 (2019) 210-215, 1810.12602

* Valid for the detection of decays of heavy-massive LLP pair-production cases.

- **★** Roughly $\beta \gamma \lesssim 1$
- ★ A simple acceptance argument stresses effectiveness of the inner tracker for quite wide lifetime ranges.
- * Requirement of 2 LLPs/event is only effective when the background dominates.
- ★ Muon spectrometer can complement the longer lifetime coverage, while calorimeter contribution is only marginal.

Technicality challenges

- ★ Often LLP searches require to use:
 - ★ Unconventional objects (e.g. displaced vertices)
 - ★ Un-common properties of standard objects (e.g. ToF of muons)
 - Non-recommended regions (e.g. too low-pT to control)
- ★ Often these informations are not reconstructed, controlled or calibrated, and one firstly needs to cultivate these tools before carrying-out the main analysis.
- ★ Backgrounds are also un-common. Instrumental, cosmic, combinatorial or beam-induced backgrounds are not the subject of reliable MC simulation.
- * These are not always bad news in different perspective, or can be even attractive.

Direct charged LLP search series

Lifetime coverage >O(0.1 ns) up to stable. Observables depending on lifetime

Hideyuki Oide

2019-04-10

ATLAS has a systematic program for charged LLP search. Stay tuned!

33

★ Observed bkg. yields are all consistent with the expectation.

Dark-photon jets search

★ Limits presented for 125 GeV higgs decay to $2\gamma_d$ and $4\gamma_d$ (400 MeV), and 800 GeV heavy higgs decay to $2\gamma_d$ (400 MeV).

- Also scan in mass and coupling plane, compared to Run1 prompt and displaced DPJ searches.
- Now gaps are mostly filled between prompt and displaced.

Mid

Runt

