Electric conductivity in finite-density SU(2) lattice gauge theory with dynamical fermions

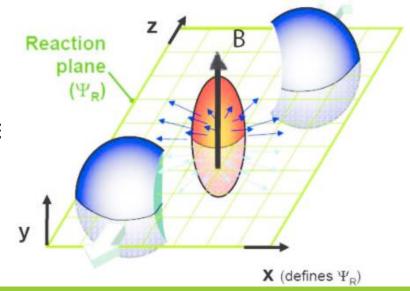
PAVEL BUIVIDOVICH (UNIVERSITY OF LIVERPOOL)
DOMINIK SMITH (GSI AND GIESSEN UNIVERSITY)
LORENZ VON SMEKAL (GIESSEN UNIVERSITY)

Electric conductivity of QCD matter

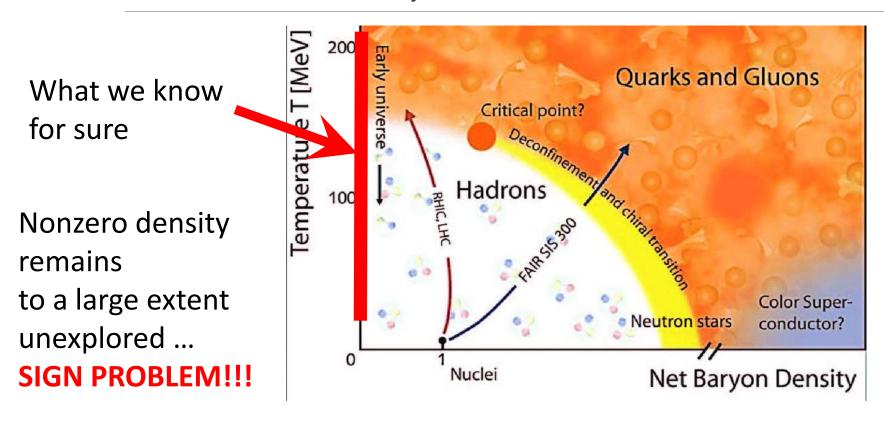
- Soft photon/Dilepton emission rate in heavy-ion collisions [McLerran, Toimela, PRD31(1985)545]

$$\frac{R}{V} = -4e^4 \int \frac{d^3 p_1}{(2\pi)^3 2E_1} \frac{d^3 p_2}{(2\pi)^3 2E_2} L^{\mu\nu} \left(p_1, p_2\right) \frac{\sigma_{\mu\nu}(q)}{q^4}$$

- Essential part of magnetohydrodynamics of quark-gluon plasma
- Important for detecting anomalous transport phenome
- Determines the lifetime of magnetic field created in off-central heavy-ion collision [McLerran, Skokov, 1305.0774]



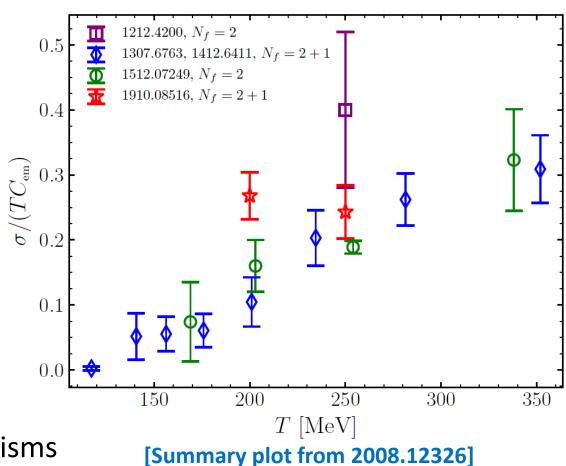
What we know about QCD electric conductivity?



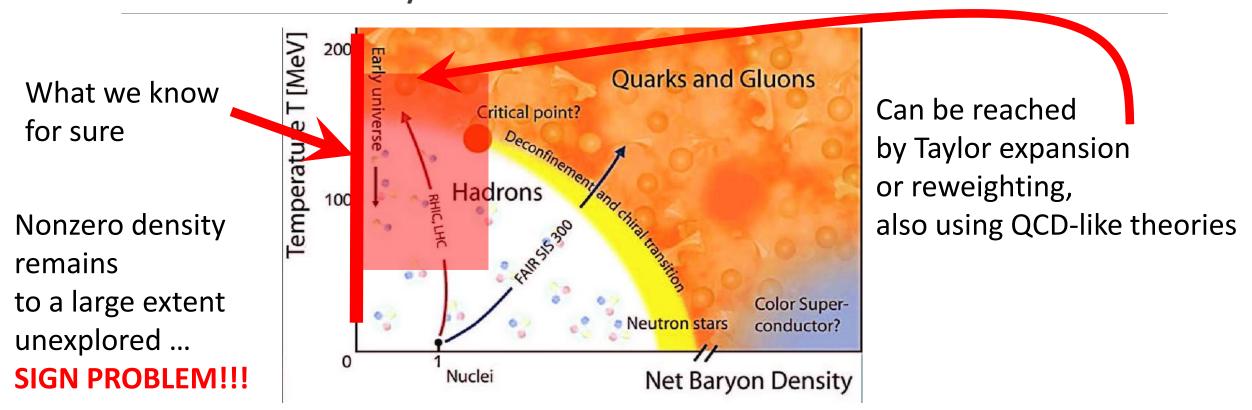
Density dependence of electric conductivity unexplored from first principles!

What we know about QCD electric conductivity

- Quark gluon plasma is a good conductor
- Hadronic matter is not such a good conductor
- Pion gas conductivity few times smaller than quark gas conductivity (same T)
- Conductivity drops with temperature
- Minimal conductivity around crossover
- Crossover between two conductance mechanisms



What we know about QCD electric conductivity?



Density dependence of electric conductivity unexplored from first principles!

QCD conductivity at moderate densities

Conductivity is an even function of μ and can be expanded as:

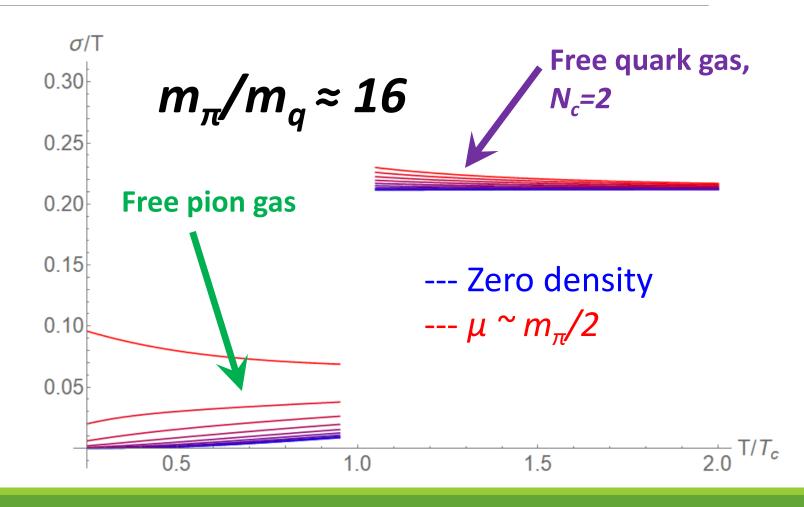
$$\frac{\sigma(T,\mu)}{T} = \frac{\sigma(T,0)}{T} \left(1 + c \left(T \right) \left(\frac{\mu}{T} \right)^2 + O\left(\mu^4 \right) \right)$$

Some model estimates:

- $c(T) \approx 0.5$ at $T \sim T_c$ from Parton-Hadron String Dynamics [Cassing, Steinert, 1312.3189] and Boltzmann equation [Srivastava, Thakur, Patra, 1501.03576]
- Potentially strong dependence on μ at $\mu/T \sim 1$
- Dynamical quasiparticle model [Soloveva, Moreau, Bratkovskaya, 1911.08547] and Functional Renormalization Group [Tripolt, Jung, Tanji, von Smekal, Wambach, 1807.04952] imply much weaker μ dependence
- $c(T) \approx 0.057$ for free massless quarks rather weak dependence!

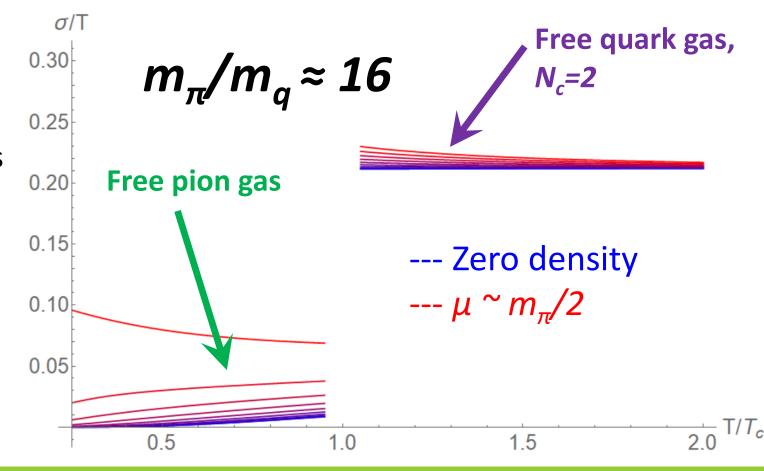
Low- and high-temperature limits: free quarks and pions

- We use the "lattice-practical" definition of conductivity σ(w) smeared over w~T
- Pion gas conductivity much smaller
- Pion gas conductivity much more sensitive to density!



Low- and high-temperature limits: free quarks and pions

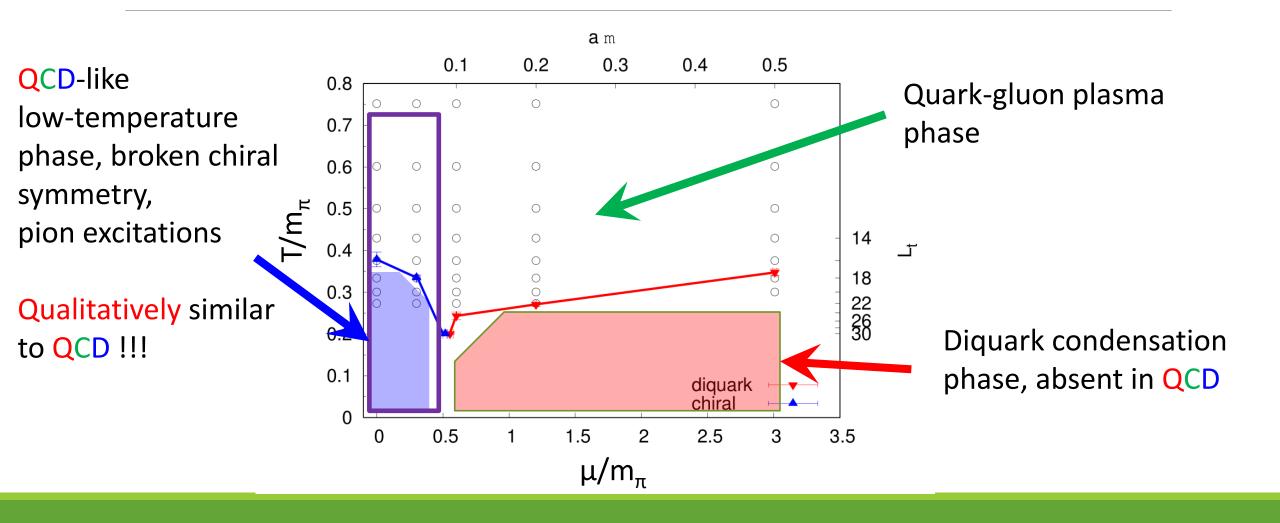
- For fermions, the effect of finite density grows at low temperatures
- For free pions, finite density has larger effect at larger temperatures
- Fermi surface vs. Bose condensation – two different conductance mechanisms!
- c(T): peak around T_c!!!



QCD Electric conductivity at finite density: ways to explore

- Direct Taylor expansion would require correlators of four currents for c(T) computationally very challenging task! (Disconnected contributions, multiple fermion diagrams, noise issues, difficulties of implementing conserved currents...)
- Reweighting would most likely be noisy
- In this work: Use QCD-like theory which is similar to QCD at small μ
- We get qualitative insight into what might happen in QCD
- We use **finite-density SU(2) gauge theory**, free of sign problem [Kogut,Sinclair,Hands,Morrison,hep-lat/0105026]

Phase diagram of SU(2) gauge theory



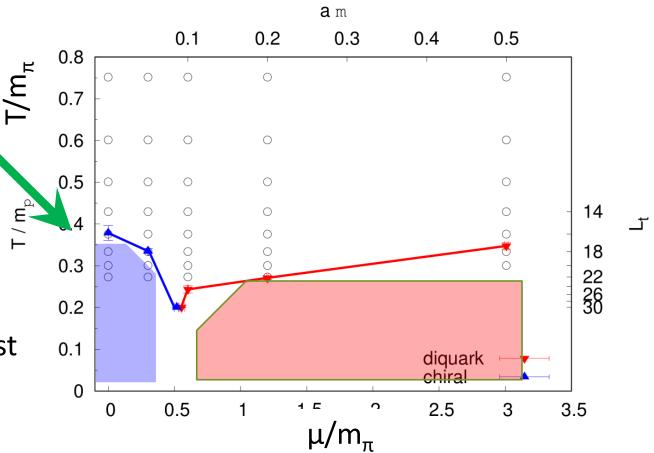
Phase diagram of SU(2) gauge theory

 Interesting feature of SU(2) gauge theory:

• Small value of $T_c/m_{\pi} \approx 0.4$

• In real QCD, $T_c \approx 155$ MeV, $m_\pi \approx 135$ MeV, $T_c/m_\pi \approx 1.15$

• Possible reason: 5 Goldstone bosons in N_f =2 SU(2) gauge theory, in contrast to 3 pions in N_f =2 QCD [Kogut et al.,hep-ph/0001171]



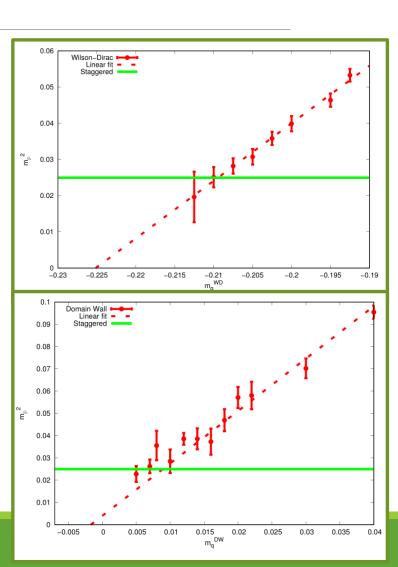
Lattice setup: sea quarks & gauge action

- $N_f=2$ light flavours with $m_u=m_d=0.005$, pion mass $m_\pi=0.158$
- Rooted staggered sea quarks
- Tadpole-improved gauge action
- Spatial lattice sizes $L_s=24$ and $L_s=30$
- Single gauge coupling = single lattice spacing
- Temporal lattice sizes L_t=4 ... 26
- Standard Hybrid Monte Carlo
- Acceleration using GPUs

 Small diquark source term added for low temperatures to facilitate diquark condensation

Lattice setup: valence quarks

- Wilson-Dirac and Domain-Wall valence quarks
- HYP-smeared gauge links in the Dirac operator: reduces additive mass renormalization and lattice artifacts
- Better quality of signal than for staggered quarks
- Bare mass for Wilson-Dirac/Domain-Wall quarks tuned to match the pion mass calculated with sea quarks
- GMOR relation works with good precision



Numerical measurement of electric conductivity

Green-Kubo relations:

$$\frac{1}{V} \sum_{\vec{x}} \langle j_i (\tau, \vec{x}) j_i (0, \vec{0}) \rangle \equiv G(\tau) = \int_0^\infty d\omega K(\tau, \omega) \sigma(\omega)$$
$$K(\tau, \omega) = \frac{\omega}{\pi} \frac{\cosh(\omega(\tau - \frac{1}{2T}))}{\sinh(\frac{\omega}{2T})}$$

- On the lattice, τ takes O(10) values, while ω is continuous
- $K(\tau, \omega)$ is an ill-defined kernel
- An ill-defined numerical analytic continuation problem

Simplest option: midpoint estimator

$$G(\tau/2) = \int_{0}^{+\infty} \frac{d\omega}{\pi} \frac{\omega}{\sinh(\frac{\omega}{2T})} \sigma(\omega)$$

- Estimates the low-frequency conductivity smeared over frequency range $w \le 4.4 T$
- Completely model-independent

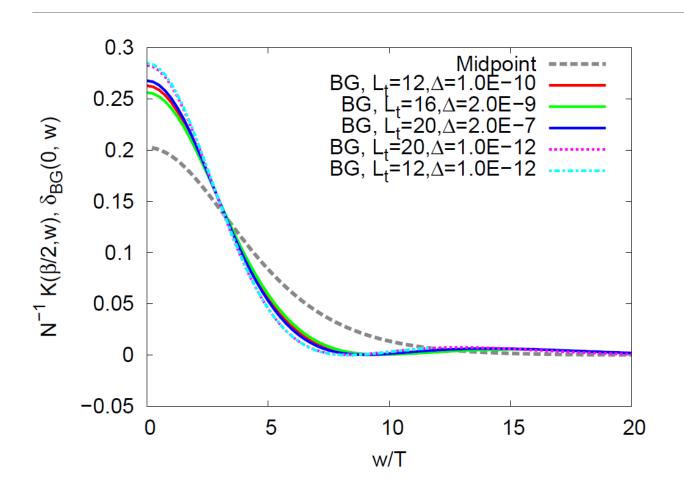
Backus-Gilbert method

 Instead of exact spectral function, an estimate smeared using the "regularized delta-function":

$$\sigma_{BG}(\omega) = \sum_{\tau} q_{\tau}(\omega) G(\tau) = \int_{0}^{+\infty} \delta_{BG}(\omega, \omega') \sigma(\omega')$$
$$\delta_{BG}(\omega, \omega') = \sum_{\tau} q_{\tau}(\omega) K(\tau, \omega')$$

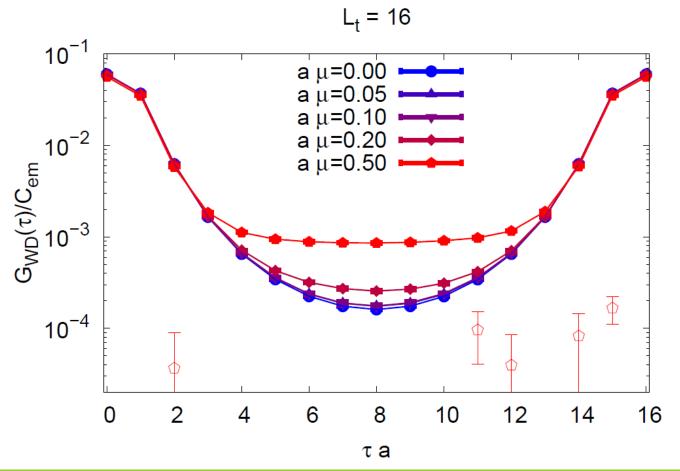
- $q_{\tau}(w)$ chosen such that the width of $\delta_{BG}(w,w')$ is minimized
- Tikhonov regularization for minimization problem [Ulybyshev, Winterowd, Zafeiropoulos, 1707.04212]: $\frac{1}{\lambda_i} \to \frac{\lambda_i}{\lambda_i^2 + \delta^2}$

Backus-Gilbert vs. midpoint resolution functions



Backus-Gilbert
 method yields ~50%
 narrower resolution
 function, at the
 expense of
 regularization
 dependence

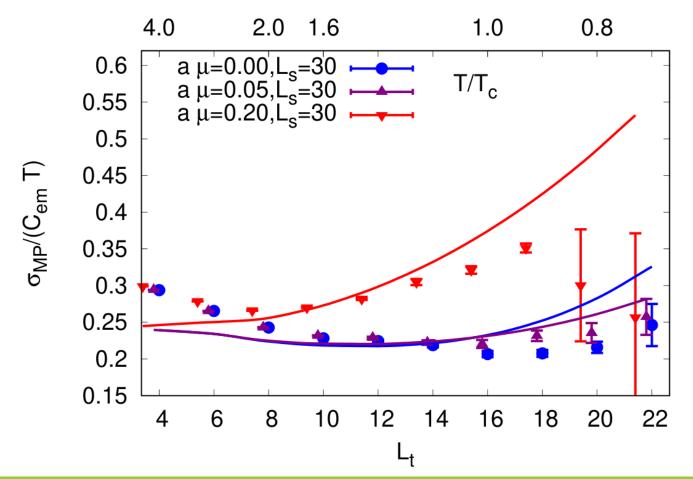
Current-current correlators vs. density



- Large-τ (infrared) correlators grow with density
- Implies the growth of lowfrequency conductivity
- Deviations from free-fermion correlators not very large
- Disconnected contributions much smaller than the connected ones
- The importance of disconnected contribution grows with density

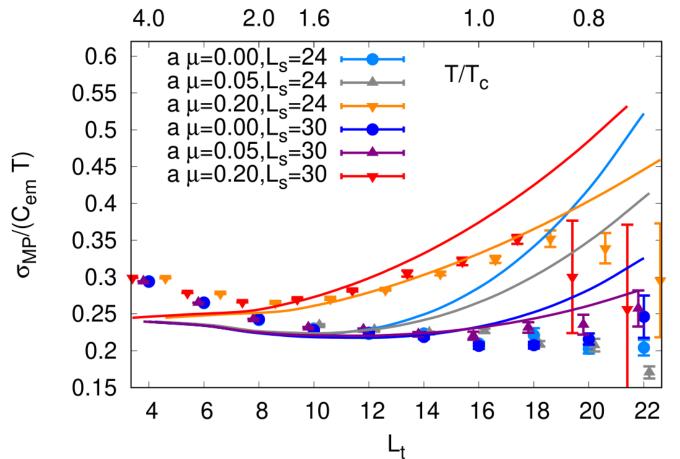
•
$$C_{em} = \sum_{f} q_f^2 = 5/9$$

Midpoint estimator vs. density



- At zero and small densities, conductivity has a minimum around crossover
- At large densities, conductivity quickly grows
- > 50% smaller than the free-fermion result at low temperatures

Finite-volume effects: 24³ vs 30³ lattices



- Results on larger lattices are closer to the free fermion result
- Quite significant volume dependence, as conductivity determined by number of near the Fermi surface

$$\frac{2\pi n}{L_c} pprox \mu$$

Anatomy of free quark spectral function

$$\sigma_q\left(\omega\right) = \frac{\alpha_q N_c}{24\pi T} \delta\left(\omega\right) + \frac{N_c}{24\pi} \mathrm{Re}\left(\omega^2 - 4m^2\right)^{\frac{1}{2}} \left(1 + \frac{2m^2}{\omega^2}\right) \times \frac{\sinh\left(\frac{\omega}{2T}\right)}{\cosh\left(\frac{\omega - 2\mu}{4T}\right)\cosh\left(\frac{\omega + 2\mu}{4T}\right)}, \quad \text{AC conduction}$$

$$\alpha_q = \int_{m}^{\infty} d\epsilon \, \frac{\left(\epsilon^2 - m^2\right)^{\frac{3}{2}}}{\epsilon} \left(\frac{1}{\cosh^2\left(\frac{\epsilon - \mu}{2T}\right)} + \frac{1}{\cosh^2\left(\frac{\epsilon + \mu}{2T}\right)} \right)$$

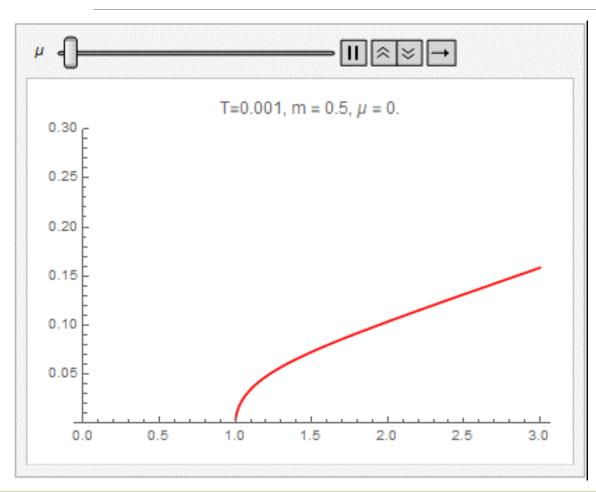
Grows as μ^2 at large μ

AC conductivity

Mass gap threshold (density of states)

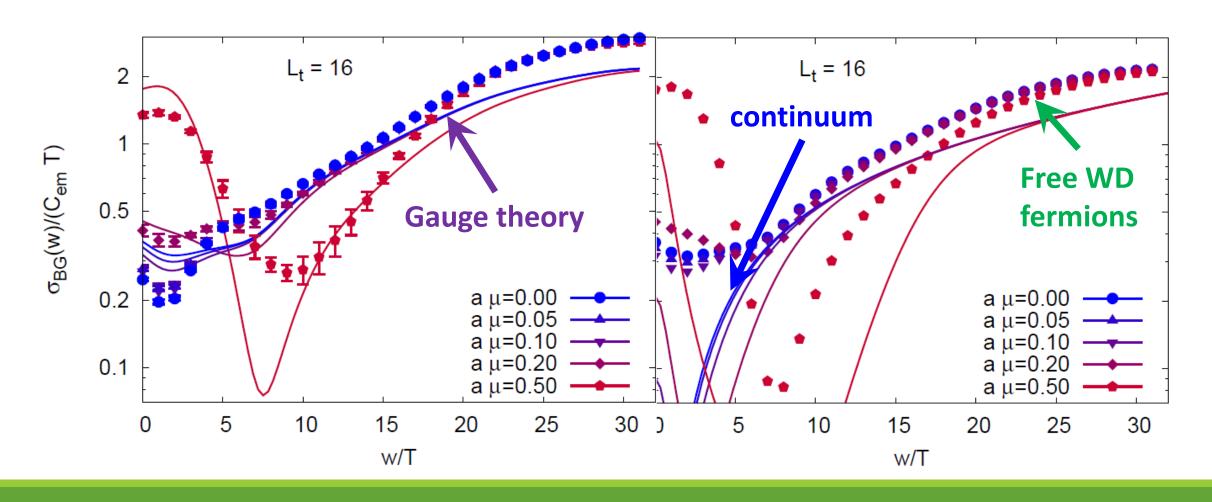
Fermi surface threshold (Fermi distribution)

Anatomy of free quark spectral function

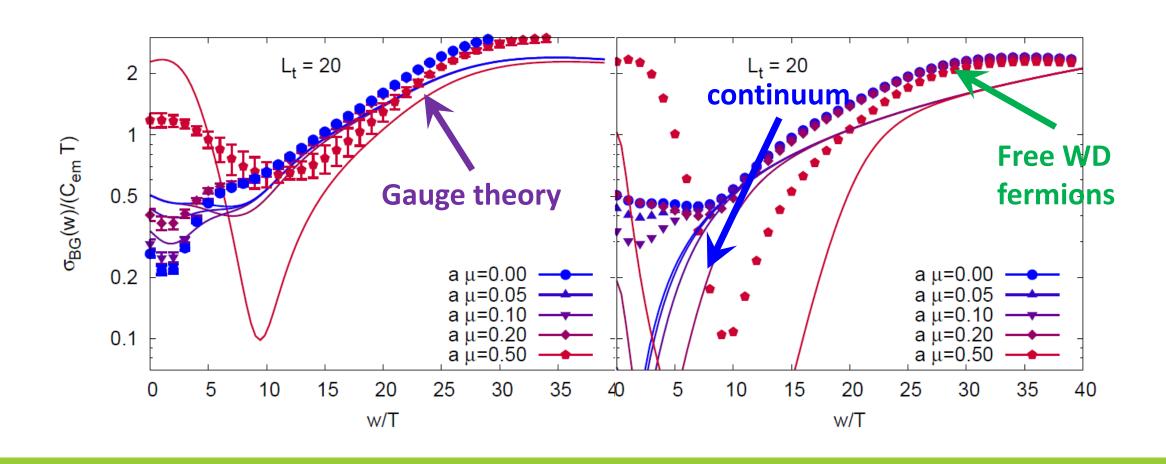


- Bare mass is m = 0.5
- Temperature is *T* = *0.001*
- The δ -function in the transport peak was replaced with the Breit-Wigner profile of width 0.01 (for illustrative purposes)

Spectral functions at finite density



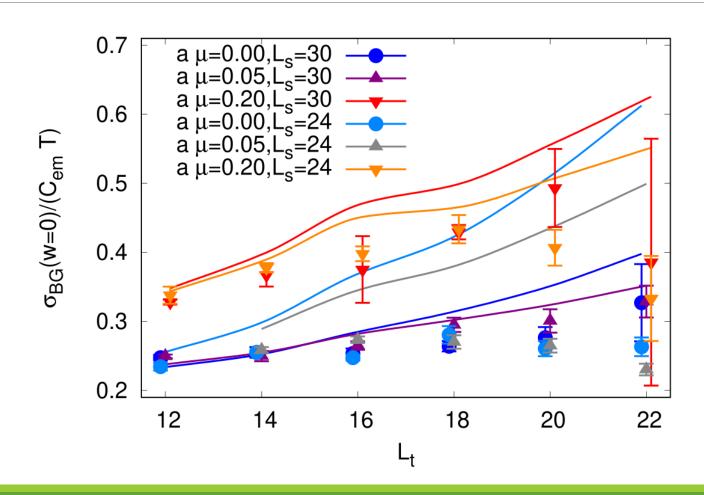
Spectral functions at finite density



Spectral functions at finite density

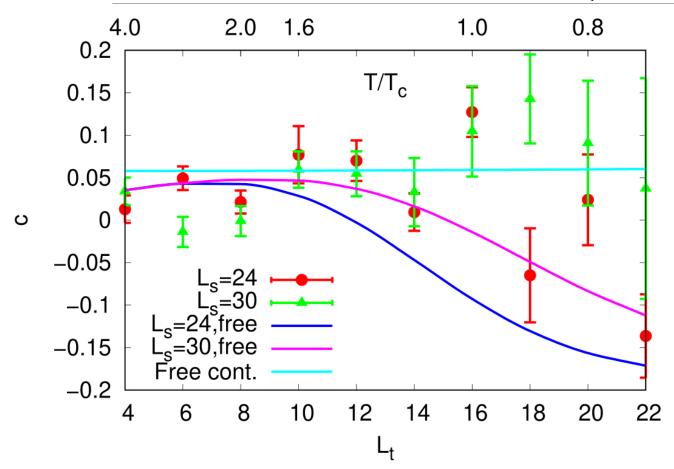
- Nontrivial interplay of threshold effects and finite-volume effects
- Significantly larger spectral function at $w/T \sim 0.4 \rho$ -meson peak
- At low temperatures, low-frequency conductivity becomes very different from the free fermion result
- Density dependence also very different at low temperatures
- At large densities, ρ-meson peak and transport peak seem to merge

Conductivity from the Backus-Gilbert method



Expansion coefficient c(T) in

$$\frac{\sigma(T,\mu)}{T} = \frac{\sigma(T,0)}{T} \left(1 + \frac{c(T)}{T} \left(\frac{\mu}{T} \right)^2 + O(\mu^4) \right)$$



- c(T) has its maximal value $c(T) \approx 0.15 + /-0.05$ around crossover temperature
- Finite-volume effects large for free fermions at low temperatures, but not in gauge theory
- The effect of finite density on electric conductivity should not be very large even at $\mu/T \sim 1$

Conclusions

- For small densities, dependence of conductivity on finite density is not very strong
- Even $\mu/T \sim 1$ changes the conductivity by 20-30%
- Conductivity is most strongly sensitive to density around crossover temperature
- These conclusions obtained in QCD-like low-density phase and should be at least qualitatively relevant for real QCD
- Strong effect of finite density at large μ in the diquark condensation phase