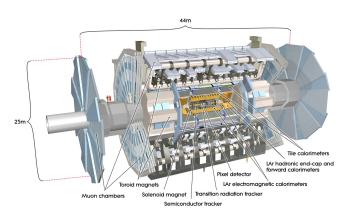
Search for CP violation in Higgs boson interactions at the ATLAS experiment

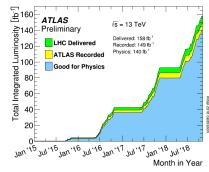
Antonio De Maria on the behalf of the ATLAS collaboration ICNFP 2020

Introduction

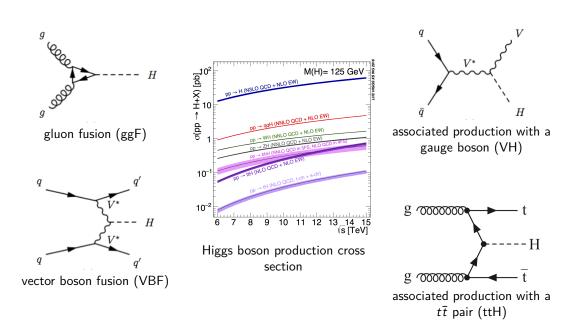
- Baryons asymmetry observed in the universe
- Sakharov : Charge-Parity (CP) symmetry has to be violated to have different reaction rates for baryons and antibaryons

$$\Gamma(N \xrightarrow{\mathcal{L}(\Delta n_{\text{Bar}} \neq 0)} f) \neq \Gamma(\bar{N} \xrightarrow{\mathcal{L}(\Delta n_{\text{Bar}} \neq 0)} \bar{f})$$

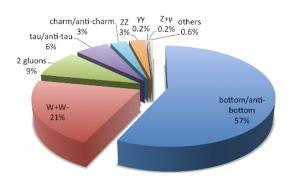

- In Standard Model (SM), CP violation is encoded in the CKM (PMNS) matrix for the quarks (leptons)
 - Source of CP violation only appears in the charged current couplings
 - Effect too small to generate the observed matter-antimatter asymmetry
- Higgs boson predicted to be a scalar ($\mathcal{J}^{CP} = 0^{++}$) in SM with no CP-violating interactions
 - The measurement of a CP-odd contribution in the Higgs boson couplings would be a sign of physics beyond the SM (BSM)
 - This motivates searches in the Higgs sector for additional sources of CP violation


2 / 19

ATLAS-LHC Run 2 performance


- LHC Run 2 finished in 2018
- ATLAS is a multi-purpose particle physics detector with forward-backward symmetric cylindrical geometry
- 140 fb $^{-1}$ dataset collected from 2015 to 2018 at $\sqrt{s}=$ 13 TeV

Higgs boson production modes



Largest cross section for gluon fusion and vector boson fusion production modes

A. De Maria 4 / 19

Higgs boson decay branching ratios

Higgs decay branching ratios

- Larger branching ratio (BR) for $H \rightarrow b\bar{b}$, $H \rightarrow WW^*$ and $H \rightarrow \tau\tau$, however poor mass resolution and large background contamination
- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*(\rightarrow 4I)$ have lower BR, but high mass resolution; can be used for precision measurements

Higgs boson couplings

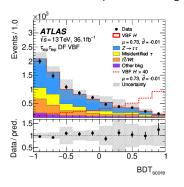
The SM Higgs boson couplings can be summarised in the Lagrangian

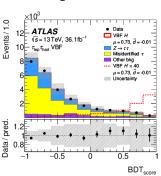
$$\mathcal{L} = -\frac{m_f}{v} f \bar{f} H + \frac{m_H^2}{2v} H^3 + \frac{m_H^2}{8v^2} H^4 + \delta_V V_\mu V^\mu \left(\frac{2m_V^2}{v} H + \frac{m_V^2}{v^2} H^2 \right)$$

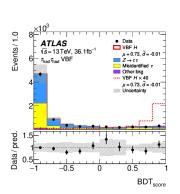
- Main couplings with W, Z, and/or third generation quarks and leptons
- CP violation search in:
 - bosonic couplings: consider dimension 6 BSM couplings which are CP-mixed
 - Yukawa couplings: consider dimension 4 with SM-like couplings which are CP mixed

VBF $H \rightarrow \tau \tau$ analysis

Phys.Lett.B805(2020)135426


- Strong VBF signal and good resolution of reconstructed Higgs boson 4-momentum
- Considering only HVV couplings
- EFT Lagrangian :


$$\mathcal{L} = \mathcal{L}_{\mathcal{SM}} + \frac{f_{\tilde{B}B}}{\Lambda^2} H^\dagger \mathring{B_{\mu\nu}} \mathring{B_{\mu\nu}} H + \frac{f_{\tilde{W}W}}{\Lambda^2} H^\dagger \mathring{W_{\mu\nu}} \mathring{W_{\mu\nu}} H$$

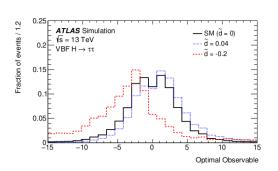

· Simplify using only one CP-violating parameter

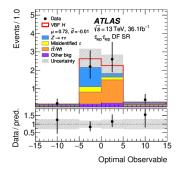
$$ilde{d} = -rac{m_W^2}{\Lambda^2} f_{ ilde{W}W} = -rac{m_W^2}{\Lambda^2} an^2 (heta_W) f_{ ilde{B}B}$$

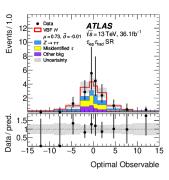
Use BDTs to separate VBF signal from background

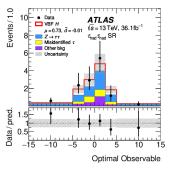
Η

VBF $H \rightarrow \tau \tau$ analysis

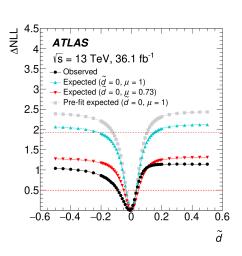

Phys.Lett.B805(2020)135426




• Use Optimal Observable to measure \tilde{d}


$$OO = rac{Re(M_{SM}^* M_{CP-Odd})}{|M_{SM}^2|}$$

- Full phase space information in 1-dim. observable for small \tilde{d}
- < OO >≠ 0 → CP violation neglecting re-scattering effects by new light particles in loops

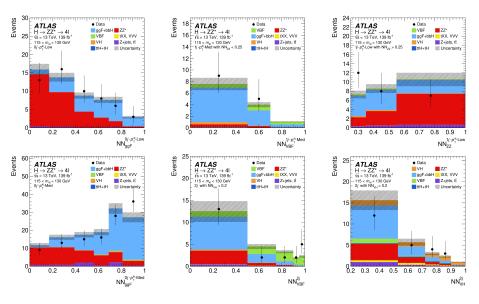

VBF $H \rightarrow \tau \tau$ analysis

Phys.Lett.B805(2020)135426

- Measured mean values in data consistent with SM expectation (< OO >= 0)
- ullet Perform fit for various signal hypotheses o determine confidence intervals on $ilde{d}$
 - no rate information used in the fit to have less model-dependent CP test

Channel	(Optimal Observable)
$ au_{ m lep} au_{ m lep}$ SF	-0.54 ± 0.72
$ au_{ m lep} au_{ m lep}$ DF	0.71 ± 0.81
$ au_{ m lep} au_{ m had}$	0.74 ± 0.78
$ au_{ m had} au_{ m had}$	-1.13 ± 0.65
Combined	-0.19 ± 0.37

• Expected (Observed) $\tilde{d}\epsilon$ [-0,035,0.033] ([-0.090,0.035]) at 68% confidence level


A. De Maria 9 / 19

$H \rightarrow ZZ^* \rightarrow 4I$ analysis

arXiv:2004.03447

- Distinguish between dominating processes in different event categories following Simplified Template Cross-Section scheme
- Classify events using neural networks (NN)
- Final discriminant from 3 NNs: 41 system, jets and additional event info

A. De Maria 10 / 19

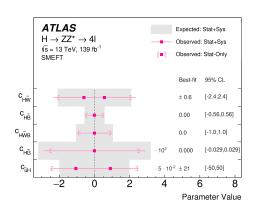
- Probe BSM effects in SMEFT formalism in Warsaw basis
- EFT Lagrangian :

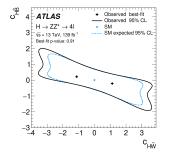
$$\mathcal{L} = \mathcal{L}_{\mathit{SM}} + \sum_{i} rac{C_{i}^{d}}{\Lambda^{d-4}} O_{i}^{d} \quad \mathsf{for} \; \mathsf{d} > 4$$

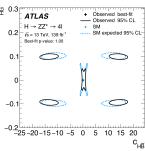
Considering only dimension-six operators affecting Higgs boson cross section at tree level

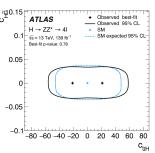
CP-even			CP-odd			Impact on	
Operator	Structure	Coeff.	Operator	Structure	Coeff.	production	decay
O_{uH}	$HH^\dagger ar{q}_p u_r ilde{H}$	c_{uH}	O_{uH}	$HH^\dagger ar{q}_p u_r ilde{H}$	$c_{\widetilde{u}H}$	ttH	-
O_{HG}	$HH^\dagger G^A_{\mu u}G^{\mu u A}$	c_{HG}	$O_{H\widetilde{G}}$	$HH^\dagger \widetilde{G}^A_{\mu u} G^{\mu u A}$	$c_{H\widetilde{G}}$	ggF	Yes
O_{HW}	$HH^\dagger W^l_{\mu u}W^{\mu u l}$	c_{HW}	$O_{H\widetilde{W}}$	$HH^\dagger \widetilde{W}^l_{\mu u} W^{\mu u l}$	$c_{H\widetilde{W}}$	VBF, <i>VH</i>	Yes
O_{HB}	$HH^\dagger B_{\mu u}B^{\mu u}$	c_{HB}	$O_{H\widetilde{B}}$	$HH^\dagger \widetilde{B}_{\mu u} B^{\mu u}$	$c_{H\widetilde{B}}$	VBF, <i>VH</i>	Yes
O_{HWB}	$HH^{\dagger} au^{l} W^{l}_{\mu u} B^{\mu u}$	c_{HWB}	$O_{H\widetilde{W}B}$	$HH^{\dagger} au^{l}\widetilde{W}_{\mu u}^{l}B^{\mu u}$	$c_{H\widetilde{W}B}$	VBF, VH	Yes

$H ightarrow ZZ^* ightarrow 4I$ analysis

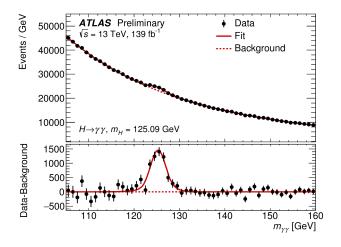

arXiv:2004.03447

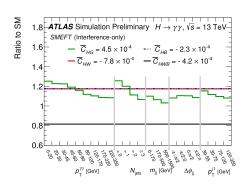


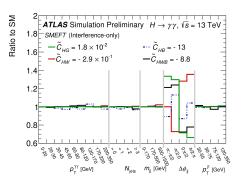

 Performing fit using BSM-dependent signal strength parameters for each production bin


$$\mu^{p}(\vec{c}) = \frac{\sigma^{p}(\vec{c})}{\sigma_{SM}} \frac{\mathcal{B}^{4I}(\vec{c})}{\mathcal{B}^{4I}_{SM}} \frac{A(\vec{c})}{A_{SM}}$$

- Use only rate information; no CP odd observable is being probed
- Fit results with both one/two coefficient fitted at a time
- Results consistent with SM hypothesis
 → no sign of CP violation

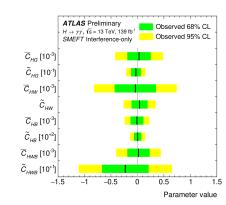



- Signal extracted from diphoton invariant mass in the range [105-160]
 - Signal parameterised using Crystal Ball function
 - Background parameterised using an exponential of a second-order polynomial



A. De Maria 13 / 19

- Using both SILH and SMEFT formalism to parameterise additional CP-even/CP-odd interaction through dimension-six operators
 - use different operators to describe new Higgs boson interactions
 - results shown only for SMEFT formalism
- ullet In SMEFT formalism, CP-odd contribution exhibit sensitivity only for $\Delta\Phi_{jj}$
 - signed difference in the azimuthal angle between the two leading jets in an event ordered by their rapidities
- Results extracted measuring differential cross section of five different observables

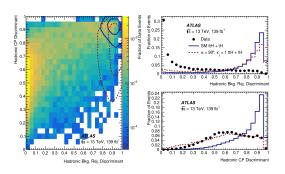


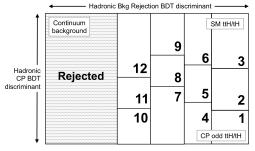
${ m H}{ ightarrow}\,\gamma\gamma$ analysis

ATLAS-CONF-2019-029

- Testing two different scenarios:
 - Interference term only
 - Interference and quadratic term
- Significant differences emerge for the CP-odd coefficients for which the interference term is vanishing
- Results consistent with SM hypothesis
 → no sign of CP violation
- Limits set at 68% and 95% confidence level

Coefficient	95% CL, interference-only terms	95% CL, interference and quadratic terms
\overline{C}_{HG}	$[-4.2, 4.8] \times 10^{-4}$	$[-6.1, 4.7] \times 10^{-4}$
\widetilde{C}_{HG}	$[-2.1, 1.6] \times 10^{-2}$	$[-1.5, 1.4] \times 10^{-3}$
\overline{C}_{HW}	$[-8, 2, 7.4] \times 10^{-4}$	$[-8.3, 8.3] \times 10^{-4}$
\widetilde{C}_{HW}	[-0.26, 0.33]	$[-3.7, 3.7] \times 10^{-3}$
\overline{C}_{HB}	$[-2.4, 2.3] \times 10^{-4}$	$[-2.4, 2.4] \times 10^{-4}$
\widetilde{C}_{HB}	[-13.0, 14.0]	$[-1.2, 1.1] \times 10^{-3}$
\overline{C}_{HWB}	$[-4.0, 4.4] \times 10^{-4}$	$[-4.2, 4.2] \times 10^{-4}$
\widetilde{C}_{HWB}	[-11.1, 6.5]	$[-2.0, 2.0] \times 10^{-3}$

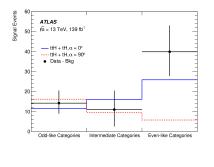


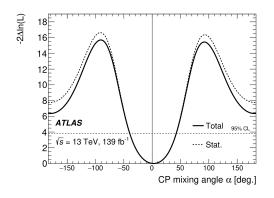

- Search for CP-odd contribution to top Yukawa coupling
- Using Higgs Characterization model :

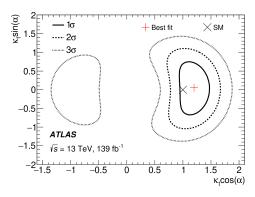
$$\mathcal{L} = -\frac{m_t}{\nu} (\bar{\Psi_t} k_t [\cos \alpha + i \sin \alpha \gamma_5] \Psi_t) H$$

where k_t is the coupling parameter and α is the CP-mixing angle

• Use two BDTs for event classification: signal vs background, CP-odd vs CP-even signal

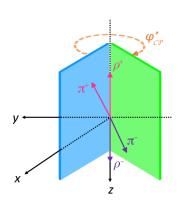

A. De Maria 16 / 19

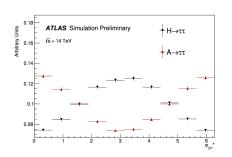

$ttH \rightarrow \gamma \gamma$ analysis


Phys.Rev.Lett.125,061802

- Results extracted from a fit of $m_{\gamma\gamma}$ spectrum
- 2D fit results for $k_t \cos \alpha$ and $k_t \sin \alpha$ show agreement with SM hypothesis
- limit on α is set without prior constraint on k_t in the fit: $|\alpha| > 43^o$ is excluded at 95% confidence level
- No sign of CP violation

CP nature of the $H \rightarrow \tau \tau$ coupling


ATL-PHYS-PUB-2019-008

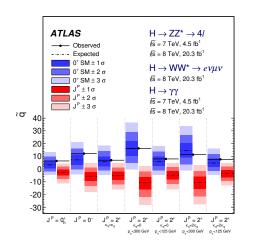


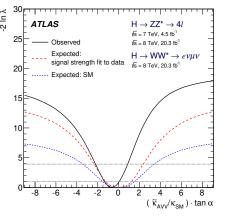

Consider CP-violating Lagrangian:

$$\mathcal{L} = g_{\tau\tau}(\cos\Phi_{\tau}\bar{\tau}\tau + \sin\Phi_{\tau}\bar{\tau}i\gamma_{5}\tau)h$$

- CP violation encoded in the correlation between trasverse spin components of the taus
- Access the spin correlation by reconstructing the angle ϕ_{CP}^* between the tau decay planes
- HL-LHC could bring sensitivity to H $\to \tau \tau$ vertex due to increased data statistics

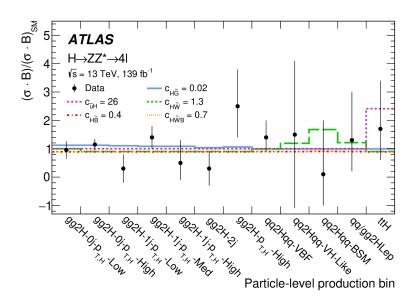
Conclusion


- Baryons asymmetry observed in the universe cannot be explained only with CP-violation predicted by Standard Model
- Higgs boson predicted to be a scalar with no CP-violating interactions
 - additional sources of CP violation in the Higgs sector would bring to new physics
- Different channels have been exploited probing Yukawa and bosonic couplings but so far no sign of CP violation
- Looking forward to new searches while waiting for Run 3 data-taking and HL-LHC


Thanks For Your Attention

Backup

CP measurement in Run 1


Phys. Rev. D 98, 030001 (2018)

- ullet In all investigated scenarios, data are compatible with $J^{\it CP}=0^+$ hypothesis
- Need to improve precision to exclude CP-odd mixing

$H ightarrow ZZ^* ightarrow 4I$ analysis

arXiv:2004.03447

The expected signal yield ratio for chosen CP-odd EFT parameter values together with the corresponding cross-section measurement in each production bin of Reduced Stage 1.1. The parameter values correspond approximately to the expected confidence intervals at the 68% CL obtained from the statistical interpretation of data.

A. De Maria 23 / 19