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Summary

The Turbulence in incompressible fluid is represented as a Field
Theory in 3 dimensions. There is no time involved, so this is
intended to describe stationary limit of the Hopf functional in a
regime when viscosity ν → 0 at fixed energy flow E .

The basic fields are Clebsch variables defined modulo gauge
transformations (symplectomorphisms). Explicit formulas for
gauge invariant Clebsch measure in space of steady flows com-
patible with finite energy flow are presented.

We introduce a concept of Clebsch confinement related to un-
broken gauge invariance and study Clebsch instantons: singular
vorticity sheets with nontrivial helicity related to winding num-
bers of Clebsch field. These singular solutions are involved in
enhancing energy dissipation and creating exponential tails in
velocity circulation PDF.
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Summary

The turbulence which is a strong coupling phase of original field
theory of fluctuating velocity field becomes a weak coupling
phase of a dual string theory describing fluctuating surfaces. The
effective expansion parameter is ν

1
5 as opposed to 1

ν expansion
of original field theory. Our scaling laws are different from K41.

We computed the leading terms of WKB expansion around in-
stanton solution with discontinuity at a minimal surface. In a
turbulent limit the tangent components of vorticity around the
surface grow as some negative power of viscosity and has Gaus-
sian profile in normal direction with the width vanishing as an-
other power of viscosity.

The distribution for PDF of velocity circulation has exponential
tails which fit the numerical simulations within their systematic
errors due to the finite lattice.
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Fixed Point of the Hopf Equation

There are two alternative views of Turbulence:

• time -averaged distribution of the solution of stochastic
differential equation over Gaussian distribution of random
forces.

• ensemble-averaged distribution of steady state solution of
the Hopf functional equation over initial or boundary
conditions.

In principle, these approaches are equivalent, but at the technical
level they are very different. They are like Newton Dynamics vs
Gibbs Statistics.
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Fixed Point of the Hopf Equation

The first approach is used in numerical simulations, perturbative
expansion in 1

ν and also in some non-perturbative calculations
in the program ”Instantons and Intermittency” started in the
90-ties . Unfortunately, this program was never implemented for
Navier-Stokes equation, only for passive scalar (Falkovich et al.
1996) and for Burgers equation (Gurarie and Migdal 1996).

The second approach deals directly with observable single time
statistical distribution, which is a significant advantage over un-
necessary stochastic dynamics of the first approach.

This approach was modified in the 90-ties to produce Loop
Equations (Migdal 1995) and recently (Migdal 2020c,Migdal
2020b,Migdal 2020a) we advanced that approach using Clebsch
variables.
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Fixed Point of the Hopf Equation

Navier-Stokes equation for vorticity

ω̇α = Gα[ω]

Gα = ν∂2ωα + ωβ∂βvα − vβ∂βωα;

leads to the Hopf equation for generating functional

Z[~λ, t] =

〈
exp

(
ı

∫
r
λαωα

)〉
;

∂tZ = ı

∫
r
λαGα

[
−ı δ

δλ

]
Z

with averaging over randomized initial conditions being implied.



Summary

Fixed Point of
the Hopf
Equation

Generalized
Beltrami Flow

Gauge
Invariance

The GBF
Measure

Energy Flow
Balance

Clebsch
Instanton

Master
Equation

Instanton On
Flat Surface

Minimization
Problem

Smeared
Vorticity and
Dissipation in
Navier-Stokes
Equations

Circulation
PDF

Discussion.
Do we have a
theory yet?

Fixed Point of the Hopf Equation

The external potential random forces fα(r, t) = −∂αpext(~r, t)
drop from the Navier-Stokes equation for vorticity, therefore
the only way these random forces would affect the vorticity dis-
tribution would be the boundary conditions and the energy flow
constraint.

Instead of solving stochastic differential equation we would have
to solve steady state equation with boundary conditions depend-
ing on realization of static random forces and corresponding to
finite positive energy flow.

Then we would have to average the Hopf functional over ensem-
ble of these random forces instead of averaging over time.
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Fixed Point of the Hopf Equation

Let us consider a manifold G of locally steady solutions (gener-
alized Beltrami flow, GBF)

G : Gα[ω?, ~r] = 0

Then an integral

Z ∝
∫
G
dµ(ω?) exp

(
ı

∫
r
λαω

?
α

)
;

with some invariant measure dµ(ω?) on G would be a fixed point
of the Hopf equation as one can check by direct substitution.

The random boundary conditions are hidden in the distribution
dµ(ω?) in this formula. As we shall discuss in detail later, in
addition to the local variables parametrizing vorticity ω? there
are some global parameters for the boundary forces.
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Generalized Beltrami Flow

We parameterize the vorticity by unit vector ~S ∈ S2:

ωα =
1

2
ZeijkeαβγSi∂βSj∂γSk; S

2
i = 1

where Z = const is a global scale factor (see below). We redefine
velocity and vorticity ωα ⇒ Zωα, vα ⇒ Zvα after which Z drops
from Euler equations.
The Euler equations are then equivalent to passive convection of
the Clebsch field by the velocity field:

∂t~S = −vα∂α~S

It is convenient to use polar coordinates θ ∈ (0, π), ϕ ∈ (0, 2π)
for the unit vector S = (sin θ cosφ, sin θ sinφ, cos θ):

φ1 = (1− cos θ);

φ2 = ϕ (mod 2π)
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Generalized Beltrami Flow

The second variable φ2 is multi-valued, but vorticity is finite and
continuous everywhere. The helicity

∫
d3rvαωα was ultimately

related to winding number of that second Clebsch field 1.

The volume element on S2

d2φ = d cos θdϕ

is equivalent to phase space volume element dφ1dφ2 up to the
scale factor Z. So, these φ1, φ2 are conventional Clebsch vari-
ables.

1To be more precise, it was Hopf invariant on a sphere S3 instead of
real space R3 (see Kuznetsov and Mikhailov 1980 for details).
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Generalized Beltrami Flow

There is some gauge invariance (canonical transformation in
terms of Hamiltonian system, or area preserving diffeomorphisms
geometrically)

φa(r)⇒ Ga(φ(r))

det
∂Ga
∂φb

=
∂(G1, G2)

∂(φ1, φ2)
= 1.

These transformations manifestly preserve vorticity and therefore
velocity.

These variables and their ambiquity were known for centuries
but they were not utilized within hydrodynamics until pioneering
work of Khalatnikov in 1952 and subsequent works of Kuznetzov
and Mikhailov and Levich in early 80-ties.
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Generalized Beltrami Flow

In terms of field theory, this is an exact gauge invariance, rather
than the symmetry of observables, much like color gauge sym-
metry in QCD. This is why back in the early 90-ties I referred to
Clebsch fields as ”quarks of turbulence”.

To be more precise, they are both quarks and gauge fields at the
same time.

The choice of the target space S2 for these Clebsch variables
represents the gauge fixing.

The symplectomorphisms would change the metric while preserv-
ing its determinant. We verified in (Mig20c) that there are no
ghosts needed for this gauge fixing.
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The GBF Measure

We propose the following measure on GBF(with I = (~r, α),
∑

I =∫
d3r

∑
α etc):

dµ[~S] =
∏
r

d2Srd
3Urd

3Ψr

exp

(
ı
∑
I

UIG
I +

1

2
[Φ,Φ]

)
;

Φ =
∑
I

ΨIG
I ;

Gα =
ν

Z
∂2ωα + ωβ∂βvα − vβ∂βωα;

[A,B] =

∫
r

δA

δSj(~r)
eijkSi(~r)

δB

δSk(~r)

We scaled the global normalization factor Z out of velocity and
vorticity fields.
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The GBF Measure

The Bose field UI is Lagrange multiplier for the GBF condition,
and Grassmann field ΨI is corresponding ghost. The Poisson
brackets [Φ,Φ] is not vanishing for the Grassmann functionals.

In the paper (Migdal 2020a) we have proven that this mea-
sure is uniform at the GBF. The proof involves so called SVD
(Wikipedia 2020).

We can perform general linear transformation of both UI ,ΨI and
Jacobian of this transformation will cancel between DU and DΨ.
Using such transformation one can eliminate the dependence of
dµ(ω∗) from the point ω∗ at the GBFmanifold G .
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Energy Flow Balance

As is well known, the energy is pumped into the turbulent flow
from the largest scales (pipes, ships, etc.), and dissipated at the
smallest scales due to viscosity effects. Let us see how that
happens in some detail. Using Navier-Stokes equation

v̇α = ν∂2
βvα − vβ∂βvα − ∂αp; ∂αvα = 0

we have

∂t

∫
d3r

1

2
v2
α =

∫
d3r νvα∂

2
βvα − vα (vβ∂βvα + ∂αp) = 0
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Energy Flow Balance

So, we have the balance of two terms cancelling each other in
the time derivative of energy : dissipation and pumping. By
Stokes theorem these terms can be reduced to the following

E = ν

∫
V
d3rωα(r)2

= −
∫
∂V
dσβ

(
vβ

(
p+

1

2
v2
α

)
+ νvα(∂βvα − ∂αvβ)

)

The first expression for E is the dissipation, concentrated in high
vorticity regions, where the small viscosity is compensated by
square of vorticity.

The second expression is the energy flow through the boundary.
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Vorticity Cell

We are going to impose the boundary condition on the pressure,
corresponding to fixed uniform force at the infinity

p (~r →∞)→ −rαfα

With this condition and decreasing velocity at infinity, the pres-
sure term with p = −rαfα is the only one contributing to the
energy flow. Coming back to the volume integral

E = fαQα;

Qα =

∫
V
d3rvα

This is the limit of the conventional expression for energy flow
in case of uniform force. Our derivation shows that in fact this
is the energy flow through the infinite boundary.
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Vorticity Cell

In our new normalization of velocity and vorticity

E = ZfαQα;

E = Z2ν

∫
V
d3rω2

α;

Qα =

∫
V
d3rvα

The global factor Z is determined from the energy balance (at
fixed realization of the random force ~f):

Z =
fαQα

ν
∫
V d

3rω2
α

;

E =
(fαQα)2

ν
∫
V d

3rω2
α
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Master Equation

The loop equation in the minimal surface approximation was
analyzed in detail and solved numerically by Mathematica R© code
in my work in 2019. It was assumed in that paper that vorticity
was smooth and dominated by a region close to the minimal
surface, where it was directed towards normal.

As we see now, with Clebsch instanton, this assumption is mod-
ified in a nontrivial way: the vorticity flux is still determined by
smooth normal component of vorticity.

However, there is a tangential vorticity in an infinitely thin layer
around the minimal surface S : ~r = ~X(ξ), ξ = (ρ, α);C : ρ =
ρ(α). Formally this tangential component comes as a delta func-
tion, related to the discontinuity of the Clebsch field.
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Master Equation

Why minimal surface? The only boundary conditions for Cleb-
sch field we can devise compatible with gauge invariance is the
Neumann conditions

∂zφa = Rab(x, y)φb

The gauge transformation φa ⇒ Fa(φ1, φ2)

∂Fa(φ1, φ2)

∂φb
∂zφb = 0

det
∂Fa(φ1, φ2)

∂φb
= 1

will preserve it only for Rab = 0.
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Master Equation

In linear vicinity of local tangent plane to the surface its equation
reads ( with K1,K2 being principal curvatures at this point)

z − K1

2
x2 − K2

2
y2 = 0

ni =
(−K1x,−K2y, 1)√
1 +K2

1x
2 +K2

2y
2

= (0, 0, 1) +O(x, y)

Ω = nαωα →
1

2
eijeab∂iφa∂jφb +O(x, y)

nα∂αΩ(r)→ eijeab∂i∂zφa∂jφb +O(x, y)

The mixed derivatives ∂i∂zφa vanish at x = y = z = 0 for our
boundary conditions.
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Master Equation

Simple algebra then yields

0 = ∂αωα = Ω(r)∂αnα = −Ω(r)(K1 +K2) = 0

Therefore, with gauge invariant Neumann boundary conditions
the Clebsch field is allowed to have discontinuity only across the
minimal surface.
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Master Equation

As we learn from analysis in (Migdal 2020c), the vorticity in
vicinity of the surface ~r = ~X(ξ) + z~n(ξ) has the structure

~ω (~r) = δ(z)2πn~∇Φ(ξ)× ~n(ξ) + ~n(ξ)Ω(ξ) +O(z2)

~n =
∂ρ ~X × ∂α ~X√

detG

Ω(ξ) =

∂Φ(ξ)
∂ρ√

detG

Gij = ∂i ~X(ξ)∂j ~X(ξ)

The delta term comes from the normal discontinuity of φ2 while
the other component is continuous

φ2 (~r) = α+ 2πnθ(z) +O(z2); n ∈ Z;

φ1 (~r) = Φ(ξ) +O(z2)
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Master Equation

This delta term in vorticity is orthogonal to the normal vector
and thus does not contribute to the flux through the minimal
surface, so this flux is still determined by the second (regular)
term and circulation is related to this Φ(ξ)

ΓC = Z

∮
C
vαdrα =

Z

∮
C
φ1dφ2 = Z

∫ 2π

0

(
Φ(ρ(α), α)− Φ(~0)

)
dα

However, the Biot-Savart integral with this Clebsch instanton
is dominated by the singular tangential component and is finite
(though not continuous)

vβ(r) = 2πn (δβγ∂α − δαβ∂γ)∫
SC

dσγ(ξ)∂αΦ(ξ)
1

4π| ~X(ξ)− ~r|
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Master Equation

As we noted above, the GBF equations will be satisfied provided
the Clebsch master equation

vα∂αφa = eab
∂h(φ)

∂φb

with some gauge function h(φ).

The leading term in these equations near the minimal surface is
still the normal flow restriction vn(r) = 0, r ∈ S, which annihi-
lates the δ(z) term in above equation. The next order terms will
already involve the gauge function h(φ), which can in principle
be non-zero.

These equations are quite different from those we deduced from
the loop equations, because the singular terms in vorticity were
missed there. Alas, trial and error is the only path we know in
Physics.
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Instanton On Flat Surface

The simplest case of our instanton is that of a flat loop in 3D
space, which we assume to be in x, y plane. The minimal surface
is a part DC of x, y plane bounded by this flat loop.

The generic formula simplifies here (here i, j = 1, 2) :

vinsti (r0) = 0,

vinstz (r0) =
n

2

∫
D(C)

d2r∂iΦ(r)∂i
1

|r − r0|

The vanishing tangent velocity means that the regular part of
master equation is satisfied identically with h = 0.
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Instanton On Flat Surface

As for the singular part, proportional to δ(z) it requires vz(r) = 0
at the minimal surface.

In fact, there is always extra contribution to the normal velocity
from the smooth velocity ~vs(r0), related to background vorticity
in the rest of space.

So, correct equation reads

vz(r0) = vsz(r0) +
n

2

∫
D(C)

d2r∂iΦ(r)∂i
1

|r − r0|
= 0
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Minimization Problem

There is a way to reduce our master equation to a minimization
of a quadratic functional.
Let us make the integral transformation

Φ(~r) =

∫
DC

d2rvsz(~r, z)

n

∫
DC

d2r′
H(~r′)

2π|r − r′|

and we are arrive at universal equation

1

4π2

∫
DC

d2r′∂α
1

|~r′ − ~r|∫
DC

d2r′′H(~r′′)∂′α
1

|r′′ − r′|
= R(~r)

Here

R(~r) =
vsz(~r, z)∫

DC
d2rvsz(~r, z)

is normalized to unit integral over the domain.
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Minimization Problem

As we are interested in large size of domain DC compared to
the size of vorticity support in the thermostat, this R(~r) is con-
centrated inside a finite region near the center of DC . Later
we study this equation approximating R(~r) by a delta function.
Now we proceed for a general R(~r).

We observe that this problem is equivalent to minimization of
positive quadratic functional

Q[H] = −
∫
DC

d2rH(r)R(~r) +
1

2

∫
DC

d2rF 2
α[H,~r];

Fα[H,~r] =
1

2π

∫
DC

d2r′H(~r′)∂′α
1

|~r − ~r′|

As we shall see later, the position of the origin drops from asymp-
totic formulas at large area.
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Minimization Problem

This Fα[H,~r] is proportional to ∂αΦ(~r). Thus, the quadratic
part of our target functional is just a kinetic energy of a free
scalar field, but it is the linear term which forces us to use H(~r)
as an unknown.

In order for Φ(~r) and its gradients to remain finite at the bound-
ary C the new field H should satisfy Dirichlet boundary condition

H(C) = 0
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Minimization Problem

In order for vorticity to remain finite at the origin we have to
have

Fα[H,~0] = 0

Coulomb poles disappeared from this problem, being replaced by
weaker, logarithmic singularities.

The circulation integral

Γ[C] = Z

∮
dθ
(

Φ
(
R~f(θ)

)
− Φ(~0)

)
with C : ~r = L~f(θ) being the equation for the contour C in
polar coordinates on the plane.
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Smeared Vorticity and Dissipation in Navier-Stokes
Equations

The square of delta function entering the dissipation from the
instanton has to be smeared at viscous scales.

The GBF equation for velocity field (with our new normalization)

0 =
ν

Z
∂2vα − vβ∂βvα + ∂αp;

∂2p = ∂αvβ∂βvα

Before we substitute the singular instanton solution into above
GBF equation, we need to smear the theta function.

θh(z) =

∫ z

−∞
dz′δh(z′),

where δh(z) is some approximation to the delta function with
width h → 0. The shape of smeared delta function will follow
from the Navier-Stokes equations.
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Smeared Vorticity and Dissipation in Navier-Stokes
Equations

The Clebsch representation

vα = −φ2∂αφ1 + ∂αφ̃3;

φ̃3 = φ3 + φ1φ2

allows us to single out the singular terms in local tangent x, y
frame, with z being the normal distance.

vi(x, y, z) = −2πnθh(z)∂iΦ(x, y) + . . . ;

vz(x, y, z) = zv′z(x, y) + . . . ;

∂2p→ 2∂zvi∂ivz =

− 4πn (δh(z)∂iΦ(x, y)) ∂i
(
zv′z(x, y)

)
+ . . . ;

p→ zδh(z)P (x, y) + . . . ;

∂2
i P = −4πn∂iΦ(x, y)∂iv

′
z(x, y)

where . . . stand for a regular parts at z → 0.
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Smeared Vorticity and Dissipation in Navier-Stokes
Equations

Let us collect singular terms, proportional to zδh(z), δ′h(z) with
coefficients depending only of x, y:

2πn
( ν
Z
δ′h(z) + v′zzδh(z)

)
∂iΦ + ∂iPzδh(z) = 0;

∂2
i P = −4πn∂iΦ∂iv

′
z

Eliminating P we find

∂iP (x, y) = ∂iv
′
z(x, y) = 0
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Smeared Vorticity and Dissipation in Navier-Stokes
Equations

This leads to the Gaussian for normalized distribution δh(z)

δh(z) =
1

h
√

2π
exp

(
− z2

2h2

)
;

v′z(x, y) =
ν

Zh2

This is viscosity anomaly we were talking about: the singular
term ∝ zδ(z) in the Euler equation is balanced by the singu-
lar contribution ∝ δ′(z) from dissipation term. Matching these
terms leads to the Gaussian smearing of the delta function.
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Smeared Vorticity and Dissipation in Navier-Stokes
Equations

Now we have to assume some scaling law in the turbulent limit

h ∝ να

The index α will be determined from the energy balance equa-
tion.
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Smeared Vorticity and Dissipation in Navier-Stokes
Equations

With Gaussian regularization of the delta function we have∫
r
νω2

α → ν

∫
r
δh(z)2 (2πn∂iΦ)2

→ Λ

∫
S
d2r (2πn∂iΦ)2 ;

Λ =
ν

h

√
1

4π
;

Z =
Qαβfαfβ

ΛA
;

A =

∫
S
d2r (2πn∂iΦ)2
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Smeared Vorticity and Dissipation in Navier-Stokes
Equations

From the last relation we finally find the estimate of the random
force variance σ and pancake width h in the turbulent limit

σ ∼
√
Eν

1
2

(1−α);

Z ∼ hσ

ν
∼
√
Eν−

1
2

(1−α);

h ∼ να;

v′z(x, y) =
ν

Zh2
∼ ν

3−5α
2

The self-consistency requires

α =
3

5
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Smeared Vorticity and Dissipation in Navier-Stokes
Equations

in which case the anomaly contributes to the Navier-Stokes
equations in the Turbulent limit.

σ ∼
√
Eν

1
5 ;

h ∼ ν
3
5 ;

Z ∼
√
Eν−

1
5

As expected, both the variance and the width go to zero in the
turbulent limit. One can estimate the next corrections to the sad-
dle point equation, coming from the Z dependence of vorticity
by means of the viscous term in GBF equation. Differentiating
equations by Z and estimating the corrections to the energy flow
we find that these corrections are smaller than the leading terms
in the turbulent limit.
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Smeared Vorticity and Dissipation in Navier-Stokes
Equations

As for the Zeldovich pancake, it is filled with coiled vortex lines
coming and exiting in the normal direction and making n coils
within the thickness h of the pancake

Figure: The vortex lines coiling inside the Zeldovich pancake in our
Instanton solution.

The azimuth on our sphere S2 varies as ϕ = 2πnθh(z). In
other words this unit vector ~S makes n rapid rotations around
vertical axis, with angle changing as the error function. This
resembles the old-fashioned metallic globe made of two semi-
spheres screwed in at equator.
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Circulation PDF

In this section we are going to finally derive predictions for the
circulation PDF.

Γ[C] ∝ 1

n
Z

∫ 2π

0
dθ

∫
DC

d2r

H(~r)

H̄

(
1

|~r − L~f(θ)|
− 1

|~r|

)
;

H̄ =

∫
DC

d2rH(~r)R(~r)∫
DC

d2rR(~r)

We remind that the origin is placed at geometric center of the
domain DC .

The integral
∫
DC

d2rH(r)R(~r) in H̄ is concentrated on finite

scales ~r ∼ 1 due to decrease of R(~r), so this H̄ scales as H(~0),
same as H(~r) in the integral in the numerator.



Summary

Fixed Point of
the Hopf
Equation

Generalized
Beltrami Flow

Gauge
Invariance

The GBF
Measure

Energy Flow
Balance

Clebsch
Instanton

Master
Equation

Instanton On
Flat Surface

Minimization
Problem

Smeared
Vorticity and
Dissipation in
Navier-Stokes
Equations

Circulation
PDF

Discussion.
Do we have a
theory yet?

Circulation PDF

Collecting scales of the remaining factors we see that Γ[C] =
LF [C/L] in agreement with the loop equation arguments (Migdal
2019).

Taylor expansion of ~Q(~f) would be justified if, just like in a
critical phenomena in statistical physics, the susceptibility would
grow to infinity to compensate small value of external force.

This is what happens in a ferromagnet near the Curie point,
when infinitesimal external magnetic field is enhanced by large
susceptibility, resulting in a spontaneous magnetization.
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Circulation PDF

In our theory this happens because the pancake thickness h ∝ ν
3
5

becomes small in a turbulent limit together with variance of
external force σ ∝ ν

1
5 . The resulting factor h

ν ∼ ν−
2
5 enhances

the leading term (Qαβfαfβ)2 ∼ σ2 so that the nonlinear terms
of expansion would be negligible. In other words, singularities
of the instanton are the origin of the critical phenomena in our
theory.

The transformation of the Gaussian distribution to an exponen-
tial one, happens because of the ~Q(~f) factor multiplying the
Gaussian force in the Z factor in the circulation.

Resulting square of Gaussian variable transforms the Gaussian
distribution to the exponential one.
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Circulation PDF

Also, we observe that the sign of Γ is proportional to the sign of
the winding number n.

Clearly, in addition to instanton with winding number n there
are always an anti-instanton with −n.

The probability for this GBF solution in our functional integral is
exactly the same as for the positive n, so the contributions from
these flows must be added.

This provides the negative branch of circulation PDF.
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Circulation PDF

Summing up contribution from both signs we obtain an explicit
formula for a Wilson loop

〈exp (ı γΓC)〉n =
1

2

(
W
(γ
n

)
+W

(
−γ
n

))
W (γ) =

1√∏3
i=1 (1− ı γµiΣ[C])

where µi ∝ ν
1
5 are three positive eigenvalues of the matrix (in

decreasing order)
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Circulation PDF

µαβ =
σQαβ

Λ

Σ[C] =

∫ 2π

0
dθ

∫
DC

d2r
H(~r)

H̄(
1

|~r − L~f(θ)|
− 1

|~r|

)

This corresponds to asymptotic law

P (Γ) ∝

√∣∣∣∣ n

Σ[C]Γ

∣∣∣∣ exp

(
−
∣∣∣∣ nΓ

µ1Σ[C]

∣∣∣∣)
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Discussion. Do we have a theory yet?

We identified the instanton mechanism of enhancement of in-
finitesimal random force in Euler equation and demonstrated how
this enhancement takes place at small viscosity in Navier-Stokes
equations.

The required random force needed to create the energy flow
and asymptotic exponential distribution of circulation, has the
variance σ ∼

√
Eν

1
5 . This small force is enhanced by large

susceptibility.

This large susceptibility can be traced back to the singular behav-
ior of the vorticity field near the minimal surface in the turbulent
limit of Navier-Stokes equations: ω ∼ 1

h in a layer |z| ∼ h ∝ ν
3
5 .

The profile of amplitude of tangent vorticity is Gaussian of nor-
mal direction z and the Clebsch vector ~S is rapidly rotating while
crossing minimal surface.
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Discussion. Do we have a theory yet?

We presented an explicit solution for the shape of circulation
PDF generated by instanton. We claim it is realized in high
Reynolds flows for the large loops and large circulations, not as
a model, but rather as an exact asymptotic law.

The instanton is topologically stable and is related to a quadratic
minimization problem.

We confirmed the dependence |Γ| ∝
√
AC predicted earlier

(Migdal 2019) based on the Loop equations. The raw data
from (Iyer, Sreenivasan, and Yeung 2019) were compared with
this prediction. We took the ratio of the moments Mp = 〈Γp〉
at largest available p and defined the circulation scale as S =√

M8
M6

.
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Discussion. Do we have a theory yet?

Figure: Linear fit of the circulation scale S =
√

M8

M6
(with

Mp = 〈Γp〉) as a function of the R = a/η for inertial range
100 ≤ R ≤ 500. Here a is the side of the square loop C and η is a
Kolmogorov scale . The linear fit S = −0.073404 + 0.00357739R is
almost perfect: adjusted R2 = 0.999609
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Discussion. Do we have a theory yet?

Figure: The relative residuals δS
S of the linear fit are shown as a

function of the side of the square. The smooth harmonic wave
suggests that these errors are affected by harmonic wave forcing on a
16K lattice rather than genuine oscillations in infinite isotropic
system.
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Discussion. Do we have a theory yet?

The PDF is given by sum over positive integer winding numbers
n

P (Γ) =

∫ ∞
−∞

dγ

2π
e−ı γΓ

〈
exp

(
ı γ

∮
C
drαvα

)〉
∝ 1√

|Γ|µ̄Σ[C]

∞∑
n=1

exp

(
−n |Γ|

µ̄Σ[C]

)√
n

Negative winding numbers are responsible for another branch of
the PDF, so that resulting PDF is an even function of circulation
at large |Γ|. This sum reduces to so called integral logarithm
Li− 1

2
.

Obviously, at large circulation only the n = 1 term remains,
matching numerical experiments. We found that our formula
fits the latest data by Kartik Iyer within error bars of DNS with
adjusted R2 = 0.9999.
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Discussion. Do we have a theory yet?

Figure: logP (x) (red dots) together with fitted line
logP ≈ −0.000526724x− 4.3711− 0.5 log(x)± 0.116469, 1300 <

x < 28000. Here x = |Γ|
ν . Last two points have low statistics in DNS

and were discarded from fit. Remaining data match the theoretical
formula within statistical errors of DNS. Adjusted R2 = 0.999929
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Discussion. Do we have a theory yet?

Figure: Subtracting the slope. 0.000526724x+ logP (x) (red dots)
together with fitted line −4.3711− 0.5 log(x), 1300 < x < 28000.

Here x = |Γ|
ν . We see that the pre-exponential factor 1/

√
|Γ| fits the

data, though with less accuracy after subtracting the leading term.
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Discussion. Do we have a theory yet?

Figure: Relative residuals of the log fit of PDF. The harmonic wave
behavior suggests that these are artefacts of harmonic random forcing
on a 16K3 cubic lattice rather than genuine oscillations in infinite
isotropic system. Such residuals do not imply contradictions with the
theory.
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Discussion. Do we have a theory yet?

The sum over integers emerges here by the same mechanism as
in Planck’s distribution in quantum physics.

There we had to sum over all occupation numbers in Bose statis-
tics. Here we sum over all winding numbers of the Clebsch field
across the minimal surface in physical space.

In Bose statistics the discreteness of quantum numbers is related
to the compactness of the domain for the corresponding degree
of freedom.

In our case this also follows from compactness of the domain for
the Clebsch fields, varying on a sphere. The quantum numbers
are counting covering of that sphere when vortex lines coil inside
the viscous layer around minimal surface.
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Discussion. Do we have a theory yet?

The physical reason why the multi-valued Clebsch fields are
acceptable in a real world is the unbroken gauge invariance, or
Clebsch confinement. Clebsch fields are unobservable, just like
quarks or gluons.

So, do we have a theory of turbulence? Not yet IMHO, but we
may be getting there. There are still some issues to be clarified
and some computations to be made and some limits to be proven
to exist. And maybe some errors to be corrected.

Once again I am appealing to young mathematical physicists
and string theorists: come and help me! Do not wait until the
turbulence experts will finally endorse this theory, they will take
forever. The gauge-string duality is in play here and you know
it better than anyone. You can develop this approach into a
Theory of Turbulence.
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