

New results from the CUORE experiment

Irene Nutini Università degli Studi Milano Bicocca INFN Milano Bicocca 9th International Conference on New Frontiers in Physics (ICNFP 2020) September 8th, 2020

I.Nutini, ICNFP2020 conference - September 8th, 2020

Outlook

- Double beta decay
- The CUORE experiment
- CUORE physics data taking
- New results from CUORE:
 - Ονββ decay search
 - 2vββ decay measurement and background
 - Ονββ/2νββ decay to excited states

Double beta decay

Double beta decay is a rare nuclear decay: $(N,Z) \rightarrow (N-2, Z+2)$

The CUORE experiment

CUORE:

Cryogenic Underground Observatory for Rare Events

Cryogenic experiment: ~1 ton solid state calorimeter 988 ^(nat)TeO₂ crystals operated at ~10 mK

- large mass and high granularity -

Artusa D.R. et al. (CUORE Collaboration), Adv. High Energy Phys. 2015,879871,(2015) http://doi.org/10.1155/2015/879871

Experiment located at Laboratori Nazionali del Gran Sasso (LNGS), Italy

Primary goal: search for 0vββ decay of ¹³⁰Te **CUORE 0vββ projected sensitivity**:

 $S_{0v} \sim 9 \; x \; 10^{25} \; yr$ (90% C.L.) in 5 years $m_{\beta\beta} < 50\text{--}130 \; meV$

The CUORE challenge

Low background

- Deep underground location (LNGS) Overburden: 1400 m calcareous rock (3600 m.w.e) Cosmic ray rate reduction: 10⁻⁶ relative to the surface
- Strict radio-purity controls on materials and assembly
- Passive shields (Pb) from external and cryostat radioactivity
- Detector: high granularity and self-shielding

Background goal: 10⁻² c/(keV·kg·yr)

in the Region Of Interest (ROI) around $Q_{\beta\beta}$

Low temperature and low vibrations *

TeO₂ detectors to be operated as bolometers at temperature ~10 mK: need for cryogenic infrastructure

Multistage cryogen-free cryostat: Cooling systems: Pulse Tubes (PTs) and Dilution Unit (DU)

- Mass to be cooled < 4K: ~ 15 tons (IVC volume and Cu vessels, Roman Pb shield)
- Mass to be cooled < 50 mK: ~ 3 tons (Top Pb shield, Cu supports and TeO₂ detectors)
- Mechanical vibration isolation Reduce energy dissipation by vibrations

Target energy resolution: 5 keV FWHM

in the Region Of Interest (ROI) around $Q_{\beta\beta}$

Double beta decay with TeO2 bolometers

Benefits of using ^(nat)TeO₂ detectors:

- ¹³⁰Te natural isotopic abundance n(¹³⁰Te) = 34.167%, no need for further enrichment after the growth of natural crystals
- Q_{ββ} (¹³⁰Te) = 2527.518 keV, above most of the natural radioactivity
- ¹³⁰Te within the detector absorber of TeO₂ ($\varepsilon \sim 90\%$)
- Reproducible growth of large number of high quality and high purity crystals; large active mass detector (crystals ~ 1kg, ~1000 crystals)
- TeO₂ operated as **low temperature detectors** (~10 mK): **very good energy resolution** Δ (~0.1-0.2% FWHM/E at $Q_{\beta\beta}$), allows a better reconstruction of the background spectrum and a reduction of 2v $\beta\beta$ decay irreducible background around $Q_{\beta\beta}$

Artusa D.R. et al. (CUORE Collaboration), Adv. High Energy Phys. 2015,879871,(2015) http://doi.org/10.1155/2015/879871

CUORE and the bolometric technique

CUORE TeO₂ detectors are operated as cryogenic bolometers **sensitive to phonons**

Simplified thermal model:

One thermal capacity C (crystal) One thermal link G (btw crystal/heat bath)

$$\Delta T \propto \frac{E_{dep}}{C} \qquad \tau = \frac{G}{C}$$

Amplitude of the pulse $\propto \Delta T \propto$ Energy deposition

- ✤ Low heat capacity @ T ~ 10 mK
- Excellent energy resolution (~0.2% FWHM)
- Same detector response for different particles (heat only)
- Slowness if coupled with NTDs (suitable only for rare event searches)

The CUORE detector

CUORE instrumented bolometers

CUORE detector

Array of closely packed **988 TeO**₂ **crystals arranged in 19 towers** High Mass of TeO₂: **742 kg** (206 kg of ¹³⁰Te)

CUORE data taking

- Data taking started in Spring 2017
- After initial data taking phase, significant effort devoted to understanding the system and optimizing data taking conditions
- Since March 2019 data taking is continuing smoothly with > 90% uptime
- CUORE "data set": ~1 month of background data taking with a few days of calibration at the start and end

Reached 1 ton yr of raw exposure!

CUORE data processing

I.Nutini, ICNFP2020 conference - September 8th, 2020

New results from CUORE: 0vßß analysis

Total exposure for $0\nu\beta\beta$ decay search (PRL2020) **372.5 kg yr** ^{nat}**TeO**₂, ¹³⁰**Te exposure: 103.6 kg yr**

(After analysis selections)

- Blinding of the background spectrum: optimization of analysis procedures and selections
- Event selection is performed after discarding periods of low quality data (about 1% of live time)
- Detector response function built on the 2615 keV calibration line. Apply a scaling factor to obtain the correct energy resolution at Q_{ββ} (7.0 ± 0.4) keV FWHM
- Containment efficiency for a 0vββ decay to be single site event (evaluated via MC) (88.350 ± 0.090)%
- Selection efficiencies (evaluated on data): trigger, energy reconstruction, pile-up rejection, multiplicity, PSA - (87.54 ± 0.17)%

Alduino C. et al. (CUORE collaboration), Phys. Rev. Lett. 122,

122501, (2020), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.122501

New results from CUORE: 0vßß analysis

0vββ peak search

- Unblinded data:
 - Bayesian Analysis (BAT)
 - Likelihood model: flat continuum (BI), posited peak for 0vββ (rate), peak for 60Co (rate + position)
 - Unbinned fit in ROI [2490,2575 keV] on physical range (rates non-negative), uniform prior on Γ_{0v}
 - Systematics: repeat fits with nuisance parameters, allow negative rates (<0.4% impact on limit)

No evidence of signal.

Posterior of Γ_{0v} : extract an upper limit on decay rate.

Half-life limit for $0\nu\beta\beta$ in ¹³⁰Te T_{0v}^{1/2} (¹³⁰Te) > 3.2 × 10²⁵ yr (90%C.I including syst.)

Alduino C. et al. (CUORE collaboration), Phys. Rev. Lett. 122,

122501, (2020), https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.122501

New results from CUORE: 0vßß analysis

Repeating the fit in the ROI, without the $0\nu\beta\beta$ decay contribution **ROI background index (B) = (1.38 ± 0.07) × 10⁻² c/(keV·kg·yr)**

Exclusion sensitivity for 0vββ decay:

Generate pseudo-experiments with bkg-only hypothesis, fit the ROI with bkg+signal hypothesis **CUORE median exclusion sensitivity on** ¹³⁰Te halflife: $T_{0v}^{1/2}$ (¹³⁰Te) = 1.7 × 10²⁵ yr Probability to get a more stringent limit given the current sensitivity: 3.2%.

Limit on 0vββ decay half life and interpretation in context of light Majorana neutrino exchange: m_{ββ} < 75 - 350 meV at 90% C.I.

Alduino C. et al. (CUORE collaboration), Phys. Rev. Lett. 122,

122501, (2020), <u>https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.122501</u>

New results from CUORE: 2vßß decay

New results from CUORE: 2vßß decay

2vββ decay: dominant component of the observed M1 spectrum between ~ 1 to 2 MeV, due to reduced γ backgrounds and self shielding of outer TeO₂ towers

Measurement of the $2\nu\beta\beta$ half-life of 130 Te $T_{2\nu}^{1/2}$ (130 Te) = [7.71 $^{+0.08}$ - $_{0.06}$ (stat) $^{+0.17}$ - $_{0.15}$ (syst)] x 10²⁰ yr

130Te 2vββ - M1 Counts/keV CUORE data, M1 (300.7 kgy) 10³ 130Te 2vββ JAGS reconstruction where ! Some Source Sour 10² 10 CUORE preliminary (300.7 kg yr) 500 1000 1500 2500 2000 Energy (keV)

Systematic uncertainties:

- Data selection: geometric splitting, time splitting, fit range
- Choice of 2vββ spectrum (SSD vs HSD)
- Unconstrained fallout products (90Sr)

"CUORE Results and the CUPID Project" at Neutrino 2020 conference, <u>https://indico.fnal.gov/event/43209/contributions/187866/attachments/</u> <u>129542/159294/CUORE_CUPID_Nu2020.pdf</u>

Paper in preparation

New results from CUORE: excited states

Search for 0vßß and 2vßß decays of ¹³⁰Te to the first 0+ excited state of ¹³⁰Xe

- Double beta decay can proceed also through transitions to the various excited states of the daughter nucleus
- 2vββ decay to the 0+ excited state observed in ¹⁰⁰Mo and ¹⁵⁰Nd, with half lives of the order of few 10²⁰ yr
- Previous attempts of measuring the ββ decay of ¹³⁰Te to the first 0+ excited state of ¹³⁰Xe made by both CUORICINO and CUORE-0:

 $(T^{1/2})^{0v}_{0+} > 1.4 \times 10^{24} \text{ yr} (90\% \text{ C.L.}), (T^{1/2})^{2v}_{0+} > 2.5 \times 10^{23} \text{ yr} (90\% \text{ C.L.})$

Signature of the decay:

Cascade of de-excitation γs in coincidence with βs

- multi-site signatures
- background reduction with respect to the corresponding transitions to the ground state, especially in case of a high detector granularity

Pattern	BR [%]	Energy γ_1	Energy γ_2	Energy γ_3
Α	86%	1257 keV	536 keV	-
В	12%	671 keV	586 keV	536 keV
С	2%	1122 keV	671 keV	-

New results from CUORE: excited states

Considering only fully contained events for the analysis

Experimental signatures considered for the analysis:

- 2A0-2B1: Multiplicity 2, crystal1= $\beta\beta + \gamma(536)$ & crystal2 = $\gamma(1257)$
- 2A2-2B3: Multiplicity 2, crystal1= $\gamma(536)$ & crystal2 = $\beta\beta$ + $\gamma(1257)$
- 3A0: Multiplicity 3, crystal1= $\beta\beta$ & crystal2= $\gamma(536)$ & crystal3 = $\gamma(1257)$

These are the signatures which contribute the most to the discovery sensitivity in the $\beta\beta$ decay rate

"CUORE Results and the CUPID Project" at Neutrino 2020 conference, https://indico.fnal.gov/event/43209/contributions/187866/attachments/ 129542/159294/CUORE_CUPID_Nu2020.pdf

Paper in preparation

Conclusions

CUORE is the first tonne-scale operating bolometric 0vßß detector.

- New CUORE physics results of ¹³⁰Te 0vββ and 2vββ decays to ground and excited states with the physics data collected in 2017-2019
- A raw exposure of ~ 1 ton yr has been achieved and data-taking is proceeding, updated results for 1 ton yr total exposure (after analysis cuts) will be released soon!
- The CUORE data taking is currently underway to collect 5 years of run time
- Important feedback from CUORE operations for the future CUPID project (CUORE Upgrade with Particle IDentification)

Thank you on behalf of The CUORE collaboration

BERKELEY LAB

SAN LUIS OBISPO

I.Nutini, Lomonosov conference - August 23rd, 2019

Backup

Neutrinoless double beta decay

Observation of **0vßß decay would imply:**

- Lepton number violation
- presence of a Majorana term for the neutrino mass
- Constraints on neutrino mass hierarchy and scale

Neutrinoless double beta decay

Experimental 0vßß half-life sensitivity

From $0\nu\beta\beta$ decay rate measurements one can infer the effective neutrino mass term

Finite background

extremely low background
excellent energy resolution
Detection technology
Good detection efficiency: ββ source embedded into the absorber

Detector performance

Isotope choice - High isotopic natural abundance or enrichment

- Exposure
 - Large active mass (M) detector
 - Long live-time

The CUORE detector

From few g to 1 tonne TeO₂ cryogenic calorimeters for double beta decay search

CUORE optimization

B CUORE

The CUORE experiment started taking data in 2017.

- First time such a large number of macro-bolometers (~ 1000) simultaneously operated in a completely new and unique cryogenic system
- Detector and overall system different compared to previous smaller scale bolometer experiments

Dedicated detector characterization and optimization campaigns performed in order to characterize and improve the detectors and overall system performance. Goal: Improve the energy resolution and reach stable data-taking conditions

- Characterization and tuning of detector operating parameters

- Noise reduction

D'Addabbo A. et al.,Cryogenics 93, 55-56, (2018) https://doi.org/10.1016/j.cryogenics.2018.05.001

CUORE background budget

CUORE sensitivity and perspectives

CUORE 0vßß exclusion sensitivity in 5 years (90% C.L.):

 $S_{0v} \sim 9 \ge 10^{25} \text{ yr}$

with nominal background: $10^{-2} c/(keV \cdot kg \cdot yr)$

and

nominal energy resolution : 5 keV FWHM in the Region Of Interest (ROI)

Next generation of $0\nu\beta\beta$ decay experiments seek is to be sensitive to the full Inverted Hierarchy region: Sensitivity **S**₀v ~10²⁷ yr, m_ββ ~ 6 - 20 meV

CUPID (CUORE Upgrade with Particle ID) project: ¹⁰ build a future experiment with ~ 1500 enriched light emitting bolometers mounted in the CUORE cryostat, reaching nearly zero background goal, $Bkg < 10^{-4} c/(keV \cdot kg \cdot yr)$

10³

