

Search for Neutrinoless Double Beta Decay of ⁷⁶Ge with GERDA – latest results

Grzegorz Zuzel on behalf of the GERDA Collaboration

Outline

- Double beta decay
- Design and goals of GERDA
- Background reduction strategy
- GERDA latest (final) result
- Summary

Double Beta Decay Modes

- ββ decay
- GERDA design
- **Bkg** reduction
- Latest results
- Summary

 $(A,Z) \rightarrow (A, Z+2) + 2e^{-} + 2\bar{\nu}_{e}$ (A,Z) $\Delta L = 0$ $\Delta L = T_{1/2} \sim 10^{18} - 10^{24} \text{ yr}$ $T_{1/2}^{exp}$

 $(A,Z) \rightarrow (A, Z+2) + 2e^{-1}$ $\Delta L = 2$ $T_{1/2}^{exp} > 10^{26} \text{ yr}$

Background Issue

No background

 $\beta\beta$ decay

GERDA design

Bkg reduction

Latest results

Summary

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \cdot M \cdot T$$

Background

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \sqrt{\frac{M \cdot T}{B \cdot \Delta E}}$$
$$\frac{1}{T_{1/2}} = G(Q, Z) \cdot |M_{nuc}|^2 \cdot \langle m_{ee} \rangle^2$$
$$\langle m_{ee} \rangle \sim \frac{1}{\sqrt{T_{1/2}}} \sim \sqrt[4]{\frac{B \cdot \Delta E}{M \cdot T}}$$
$$(M \cdot T)^{\uparrow} \times 100 \rightarrow T_{1/2}^{\uparrow} 10 \rightarrow \langle m_{ee} \rangle \downarrow \times \sim 3$$

GERDA

ββ decay

GERDA design

Bkg reduction

Latest results

Summary

• GERDA (<u>GER</u>manium <u>D</u>etector <u>A</u>rray) has been designed to investigate neutrinoless double beta decay of ⁷⁶Ge ($Q_{\beta\beta} = 2039 \text{ keV}$) - Ge mono-crystals are very pure

- Ge detectors have excellent energy resolution
- Detector = source ($\epsilon \approx 1$)
- Enrichment required (7.4 % \rightarrow 88 92 %)
- Bare HP ^{enr}Ge detectors immersed in LAr
- Background (index) around Q_{ββ}: 10⁻² – 10⁻³ cts/(keV×kg×yr); 10 – 100 times lower compared to previous experiments (HdM/IGEX)

The GERDA Collaboration

GERDA at LNGS

ββ decayGERDA designBkg reductionLatest results

Summary

GERDA Sensitivity

 7^{6} Ge mass ~1 t BI ≈ 10⁻⁵ cts / (keV×kg×yr) Sensitivity: ~1×10²⁸ yr <m_{ee}> ~ 10 meV

LEGEND:

<u>Phase II:</u> Add new enr. BEGe (IC) det. (36 (44) kg of ^{enr}Ge in total) BI $\leq 10^{-3}$ cts / (keV×kg×yr) Sensitivity after 100 kg×yr

<u>Phase I:</u> Use refurbished HdM & IGEX (18 kg) BI $\approx 10^{-2}$ cts / (keV×kg×yr) Sensitivity after 20 kg×yr

GERDA Phase I

9th International Conference on New Frontiers in Physics ICNFP 2020, September 4-12, Crete, Greece

GERDA Phase II Setup

ββ decay

GERDA design

Bkg reduction

Latest results

Summary

20 kg of 30 BEGes 15.8 kg of 7 coax, 7.6 kg of 3 natural coax New low-mass detector holders (Si, Cu, PTFE)

New thick-window BEGe detectors

New signal and HV contacting by wire bonding flat ribbon cables

New TPB coated nylon minishrouds to reduce attraction of ⁴²K ions (from decays of ⁴²Ar) to n⁺ surface

TBP = tetraphenyl butadiene

Hybrid LAr veto: PMTs + Fibers

ββ decay

GERDA design

Bkg reduction

Latest results

Summary

810 wavelength shifting fibers coupled to 90 SiPMs

Upgrade of Phase II

ββ decay GERDA design


```
Latest results
```

```
Summary
```


- New LAr instrumentation: installation of denser fibre curtain and middle string curtain
- Some Ge channels recovered
- Few detectors etched to reduce their leakage current
- Some cables replaced with lower activity version

Accumulation of Data

Phase I

- 09.11.11 − 09.05.13: 21.6 kg×yr
- Additional Phase I data before upgrade: $1.9 \text{ kg} \times \text{yr}$

Phase II

ββ

Energy Scale and Stability

- Detectors calibrated weekly with ²²⁸Th sources
- Shifts between calibrations < 1 keV
- Every 20 s test pulse injection for gain stability measurement
- "Zero area cusp" (ZAC) filter (Eur. Phys. J. C75 (2015) 255)

FWHM Energy Resolution at $Q_{\beta\beta}$ [keV]			
	Coax	BEGe	Inverted Coax
Pre- upgrade	3.6 ± 0.3	2.9 ± 0.3	
Post- upgrade	5.6 ± 1.3	2.6 ± 0.2	2.9 ± 0.1

Bkg reduction

Latest results

Summary

LAr Veto

- Channel-wise (PMT/SiPM) anti-coincidence condition
- Thresholds at ~0.5 P.E.
- Acceptance determined from random triggers: (97.9 ± 0.1) %
- ⁴⁰K/⁴²K Compton continua completely suppressed
- γ -rays survival fractions: ⁴⁰K (EC) = ~100 %, ⁴²K (β ⁻) ~20 %
- Almost pure $2\nu\beta\beta$ spectrum after LAr veto cut (600 1300 keV)
- Background suppression in ROI: × 6

600 800 1000 1200 1400 1600 Energy (keV) 9th International Conference on New Frontiers in Physics ICNFP 2020, September 4-12, Crete, Greece

ββ decay GERDA design

Bkg reduction

Latest results

Summary

PSD for BEGe/IC Detectors

- Discrimination on a single A/E parameter (A current amplitude, E energy)
- Cut values defined from calibrations assuming 90 % DEP acceptance
- high A/E: fast events on p+ electrode (e.g. α s from ²¹⁰Po)
- low A/E: slow events on n+ electrode, multiple scattering

BW: [1930,2190] keV, excl. ± 5 keV around ²⁰⁸Tl (SEP), ²¹⁴Bi (FEP) and $Q_{\beta\beta} \pm 25$ keV

- ββ decay GERDA design Bkg reduction
- Latest results
- Summary

ββ decayGERDA designBkg reductionLatest resultsSummary

PSD for Coax Detectors

- MSE rejected with ANN (EPJC 73 (2013) 2583)
- Alphas (fast surface events) rejected with ANN- α / Rise Time (RT) cut
- ANN training on calibration data DEP and FEP as proxies for SSE and MSE, respectively.
- RT optimized on the $2\nu\beta\beta$ (1 1.3 MeV) and α sample (E > 3.5 MeV)

- ββ decay GERDA design Bkg reduction
- Latest results
- Summary

PSD for Coax Detectors

- MSE rejected with ANN (EPJC 73 (2013) 2583)
- Alphas (fast surface events) rejected with ANN- α / Rise Time (RT) cut
- ANN training on calibration data DEP and FEP as proxies for SSE and MSE, respectively.
- RT optimized on the $2\nu\beta\beta$ (1 1.3 MeV) and α sample (E > 3.5 MeV)

Application of LAr veto and PSD

- LAr veto and PSD are complementary
- Almost pure $2\nu\beta\beta$ decay spectrum
- Strong reduction of ⁴⁰K/⁴²K
- Strong reduction of ²¹⁴Bi and ²⁰⁸Tl lines
- Strong suppression of αs (²¹⁰Po on p⁺ contact)

Background Index in BW

BW: [1930,2190] keV, excl. ± 5 keV around ²⁰⁸Tl (SEP), ²¹⁴Bi (FEP) and $Q_{\beta\beta} \pm 25$ keV

Unblinded ROI

BW: [1930,2190] keV, excl. ± 5 keV around ²⁰⁸Tl (SEP), ²¹⁴Bi (FEP) and Q_{BB} ± 25 keV

5 events in $Q_{\beta\beta} \pm 25$ keV but \rightarrow no counts in $Q_{\beta\beta} \pm 2\sigma$

Statistical Analysis

Frequentist:

- best fit $N_{0v} = 0$
- $-T_{1/2} (0\nu\beta\beta) > 1.8 \times 10^{26} \text{ yr} (90\% \text{ C.L.})$
- median sensitivity for limit setting: $T_{1/2} (0\nu\beta\beta) = 1.8 \times 10^{26}$ yr at 90% C.L.

Bayesian:

- $-T_{1/2} (0\nu\beta\beta) > 1.4 \times 10^{26} \text{ yr} (90\% \text{ C.L.})$
- median sensitivity for limit setting $T_{1/2} (0\nu\beta\beta) = 1.4 \times 10^{26}$ yr at 90% C.L.

Summary

ββ decay

GERDA design

Bkg reduction

Latest results

Summary

• GERDA Phase I design goals reached:

- No $0\nu\beta\beta$ signal observed at $Q_{\beta\beta}$; best fit: $N^{0\nu} = 0$
- Background index: $\sim 10^{-2}$ cts / (keV×kg×yr)
- Exposure 21.6 kg×yr
- $T_{1/2} (0\nu\beta\beta) > 2.1 \times 10^{25} \text{ yr} (90\% \text{ C.L.})$

• GERDA Phase II achievements:

- No $0\nu\beta\beta$ signal observed at $Q_{\beta\beta}$; best fit: $N^{0\nu} = 0$
- Background index: 5.2×10⁻⁴ cts / (keV×kg×yr)
- Exposure 103.9 kg×yr (127.2 kg×yr in total)
- $T_{1/2}$ (0v $\beta\beta$) > 1.8×10²⁶ yr (90% C.L.)
- $m_{\beta\beta} \le (0.080 0.182) \text{ eV}$

• GERDA Phase II goals:

- Background index: ~10⁻³ cts / (keV×kg×yr)
- Exposure: $\sim 100 \text{ kg} \times \text{yr}$
- Sensitivity: $\sim 10^{26}$ yr
- GERDA: background-free 0vββ experiment (best sensitivity and discovery potential)
- LEGEND next generation experiment for $T_{1/2}^{0v} \sim 10^{28}$ yr
- LEGEND-200 at LNGS (GERDA technology) ready in 2021

Beyond GERDA → **LEGEND**

ββ decay

GERDA design

Bkg reduction

Latest results

Summary

First stage:

- GD + MJD + new groups
- Based on existing GERDA infrastructure
- Up to 200 kg of ^{enr}Ge
- Approved by LNGS in Aug. 2018
- Under preparation, PGT just finished
- Background reduction w.r.t GERDA: ~3
- Anticipated start of data taking in 2021
- $T_{1/2} (0\nu\beta\beta) \ge 10^{27} \text{ yr}$

Subsequent stages:

- Up to 1000 kg of ^{enr}Ge
- Background reduction w.r.t GERDA: ~30
- Location to be defined
- Required depth (^{77m}Ge) under investigation
- pCDR almost ready

9th International Conference on New Frontiers in Physics ICNFP 2020, September 4-12, Crete, Greece

Background Model

- Data after application of quality cuts and muon veto
- MaGe (Geant4) modelling of GERDA
- Simulation of contribution of all individual parts
- Input from screening measurements
- No full energy peak or other structures close to $Q_{\beta\beta}$