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The chiral separation effect(CSE) is an emergence of an equilibrium axial
current directed along an external magnetic field in the presence of a
chemical potential

j5 =
e2µ

2π2 B (1)
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Main statements

We discuss Chiral Separation Effect in case of fermions with spin-3/2.
We discuss two types of fermions - relativistic Rarita-Schwinger fermions
and quasispin 3/2 fermions in Rarita-Schwinger-Weyl semimetals. In all
cases coefficients in the conductivity of the chiral separation effect and in
front of the axial anomaly coincide
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Motivation of investigations

1.From the experimental point of view, interest in this phenomenon is
associated with the possibility of observing it both in high energy physics
and in solid state physics.
2. From the theoretical point of view special emphasis is usually placed
on the relationship between CSE and the axial anomaly.The last one is
protected from renormalization via interactions.
(Non-renormalization of the coefficient was observed on the lattice!)
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Let’s begin from QFT case and discuss extended Rarita-Schwinger model

The original equation was formulated in 1941 to describe hypothetical
relativistic fermions with spin 3/2. We start with the Lagrangian for the
Rarita-Schwinger fermions.

Lcl =
1
2
ψ̄µiε

µνλργ5γνDλψρ (2)

In this Lagrangian, in the massless case, additional symmetry arises,
which is associated with the transformation:

ψρ → ψρ + Dρε (3)

ε - some spinor.This is similar to the situation with Maxwell field. And
also as in the case of photons for fermions moving with the speed of light
only two states are physically realized with highest and lowest projection
of the spin onto the momentum.
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Inclusion of interaction in the original Rarita - Schwinger field leads to
difficulties. Problems can arise either when quantizing the field or even at
the classical level where paradoxes with superluminal velocities arise. But
even in this case one can calculate the anomaly. The method was given
by Alvares-Gaume and Witten they found that the coefficient is 3 times
larger than for ordinary fermions. For its calculation one must add ghosts
contribution ( bosons with spin one-half) 3 = 4⊕−2⊕+1. Very
interesting but it seems very hard to make predictions in this case. So we
will not follow this way!
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A very beautiful way to include interaction with abelian field for fermions
with 3

2 -spin has proposed by Adler recently. He extended
Rarrita-Schwinger model and included an interaction with spin 1/2
fermions in the following way:

S = S(ψµ) + S(λ) + Sint ,S =

∫
d4xψ̄µR

µ,Rµ = iεµηνργ5γηDνψρ

Dνψρ = (∂ν + gAν)ψρ (4)
ψ̄µ = ψ†µiγ0 (5)

S(λ) = −
∫

d4x λ̄γνDνλ (6)

Dνλ = (∂ν + gAν)λ, λ̄ = λ†iγ0 (7)

Sinteraction = m

∫
d4x(λ̄γνψν − ψ̄νγνλ) (8)

here ψ is fermionic field with spin 3/2, λ is fermionic field with spin 1/2,
m is intensity of interaction in this model.
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We can find Feynman rules:

N =

(
N

3
2
ρσ 0
0 0

)
,N

3
2
ρσ =

−i
2k2 (γσ 6 kγρ −

4
k2 kρkσ 6 k) (9)

V ν =

(
−ieγµνρ 0

0 −ieγν
)
,Aν =

(
−ieγµνργ5 0

0 −ieγνγ5

)
(10)

γµνρ =
1
2

(γµγνγρ − γργνγµ) (11)

Here N describes propagator of the system , V ν is the vector and Aν is
the axial vertex
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As we show, the expression for the CSE conductivity in static limit in
case of fermions with spin 3/2 is five times larger than the expression for
the ordinary fermions . The chemical potential is included in a standard
way as the zero component of the vector gauge field ,this inclusion leads
to the replacement k0 → i(ωn − iµ). We calculate the conductivity in the
linear response theory:

σcse = lim
pi→0

lim
ω→0

i

2pi
εijkΠAV

jk (12)

ΠAV
jk =

∫
d4xe ikµxµ < jAi j

V
j >µ (13)

σcse3/2 = lim
pi→0

lim
ω→0

iεijk

2pi
T

∑
n=2π(n+1/2)T

e2Tr

∫
d3r

(2π)3Nρη(r)Aρηj Nηµ(r + p)

V µρ
k |iωn→p0+i0 (14)
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T
∑

n=2π(n+1/2)T

Tr

∫
d3r

(2π)3Nαβ(r)γjγ5Nβα(p + r)γk =

= T
∑

n=2π(n+1/2)T

Tr

∫
d3r

(2π)3
A

(r)2(r + p)2 (15)

where:

A = [1 + 4
(r · (r + p))2

r2(r + p)2 ]tr( 6 r+ 6 p)γk( 6 r)γjγ5 (16)

So we have two contributions.
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The first term in (16) after insertion in (14) gives

σ1
cse = lim

pi→0
lim
ω→0

iεijk

2pi
T
∑
n

Tr

∫
d3r

(2π)3
tr(6 r+ 6 p)γk(6 r)γjγ5

(r)2(r + p)2 |iωn→p0+i0

σ1
cse =

e2µ

2π2 (17)

Obtaining of the second part of the conductivity is a more complicated.

σ2
cse = lim

pi→0
lim
ω→0

iεijk

2pi
4T
∑
n

Tr

∫
d3r

(2π)3
tr(6 rγjγ5)( 6 r+ 6 p)γk

r4 |iωn→p0+i0

After some efforts we obtain the following expression:

e2 lim
pi→0

iεijk4iεbk0jpb
2pi

µ

2π2 =
4e2µ

2π2 , ε
ijkεbk0j = −2δib (18)

σ2
cse =

4e2µ

2π2 (19)

all other terms are of O(p2) and we can neglect them
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We have calculated the conductivity in the extended Rarita-Schwigner
model. In the leading order in momentum this expression is five times
larger than conductivity of ordinary fermions ( but can differ for non-zero
frequencies)

σcse3/2 = σ1
cse + σ2

cse =
5e2µ

2π2 (20)

We need to discuss ghost contributions. They arise due to contraints in
the theory In Adler’s three possible ways of ghost inclusion is discussed,
one of them leads to non-propagating ghost with zero contribution to the
anomaly, the second one leads to propagating ghost but with extremely
high mass ∼ limδ→0

m
δ and -1 contribution, and the third one is an

exclusion of contribution 1 in Alvares-Gaume-Witten’s manner.
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For ghost roles in CSE we offer two arguments. The first one: very heavy
particles (mass of non-propagating ghost is proportional to m) cannot
give non-zero contribution to the thermodynamics domain because they
are suppressed by distribution function and in the limit T << m their
contribution must be negligible. The second one is more ellegant: from
Zakharov’s arguments it follows that without interparticle interaction the
chemical potential plays the same role as scalar potential, and we must
reproduce the anomaly with the substitution µ→ µ+ φ(z).
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Let’s return from relativistic physics to more realistic questions. We see
that for charged particles with a spin 3/2 in high-energy physics some
analogue of chiral separation effect can exist. In this part we want to test
our reasoning in solid systems. The situation is simplified because we do
not have problems of physical/non-physical degrees of freedom, as well as
problems with superluminal velocities. A very good test is connected with
so-called Rarita-Schwinger-Weyl Semimetals. Recently, first experimental
evidences of emergent spin-3/2 fermions have been reported in CoSi,
RhSi , AlPt , and PdBiSe . For their description a whole series of
Hamiltonians is usually considered. We decide to focus on two of them.
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The simplest choice is:

Hs1 = v
∑
i=1..3

piσ0 ⊗ σi (21)

We are dealing with a doublet of Weyl fermions in this case . The second
possible choice is :

H3/2RS = v
∑
i=1..3

piSi (22)

It is obvious that the Hamiltonian acts on fermion field with
index( 3

2 ,
1
2 ,−

1
2 ,−

3
2 ).
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matrix Si are:

S1 =


0

√
3

2 0 0√
3

2 0 1 0
0 1 0

√
3

2
0 0

√
3

2 0

 ,S2 =


0 −i

√
3

2 0 0
i
√

3
2 0 −i 0
0 i 0 −i

√
3

2
0 0 i

√
3

2 0

 ,

S3 =


3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2
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We use Kubo formulae for calculation of the conductivity in the first
case. The current vertex is Ai = vf σ0 ⊗ σi and we need to calculate the
following expression:

G (p) =
1

i(ωn − iµ)− Hs1(p)
(23)

σs1 = lim
pi→0

lim
ω→0

∑
n=2πT (n+1/2)

iεijk

4pi
Tr

∫
d3r

(2π)3G (r)AjG (r + p)Ak |iωn→p0+iε

(24)

σcse = lim
pi→0

lim
ω→0

∑
n

iεijk

4pi
I (25)

I = Tr

∫
d3r

(2π)3
rlσ0 ⊗ σl

r2 (vf σ0 ⊗ σj)
(ra + pa)σ0 ⊗ σa

(p + r)2 (vf σ0 ⊗ σk)
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As for the integral we can write:

I = σ0 ⊗
∫

d3r

(2π)3
rlσ

l

r2 (vf σj)
(ra + pa)σa

(p + r)2 (vf σk) (26)

After substitution r → vf r we find:

σs1 = Trσ0 ⊗ σcse = 2σcse (27)
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In the second case we can use different strategies. The easiest way is the
following: in the complete model there are monopoles in momentum
space with charges ±3,±1.We use semiclassical approximation that
describes electrons in crystals with inclusion of the Berry curvature.
Equations of motions in this case read as:

ṙa =
∂εa

∂pa
+ ṗa × Ωa

p (28)

ṗa = ṙa × B (29)

where iAp = u†p∇pup, up is 4-component spinor. We discuss only "left"
subspace.
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Using connection between the Berry flux and monopoles:

Na =

∫
d3p

2π
∂pi Ω

a
i , a = 1, 2 (30)

N1 = 3,N2 = 1 (31)

One can construct the current in magnetic field:

ja = −
∫

d3p

(2π)3

(
εp
∂np

∂p
+ (Ωa

p ·
∂np

∂p
)εpB

)
(32)

We are interested only in the response to an external magnetic field and
we consider only the second term:

ja = −B
∫

d3p

(2π)3 Ωa · [µ∂pnp] (33)

j =
µ(N1 + N2)

4π2 B (34)
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The other limit is connected with a strong magnetic field. We can
calculate the spectrum directly from the second Hamiltionian, after that
we can calculate the current using Fermi-Dirac distribution. This case is
more illustrative. We have gauged partial derivatives via:

p̂i → p̂i + Ai = Pi (35)
P̂i P̂j − P̂j P̂i = iFij (36)

We choose vector-potential as Ax = By and we can write:

a =
p̂x + By + i p̂y√

2B
(37)

a+ =
p̂x + By − i p̂y√

2B
(38)

H3/2 = vf
√
2B(S+a + S−a

+) + vf pzSz (39)
(40)

The current in z-direction is jz = vf ψ
†Szψ.
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Jz =

∫
d2x

∑
E

(n(E )vf ψ
†Szψ) (41)

n(E ) =
sign(E )

exp(β(E − µ)sign(E )) + 1
, β =

1
T

(42)

The second equation implies:

n(−|E |) = − 1
exp(β(|E |+ µ)) + 1

(43)

with this fact in mind we can rewrite expression for the current as:

Jz = vf

∫
dp

2π
(nf (vf |p| − µ)ψ†Szψ − nF (vf |p|+ µ)ψ†Szψ) (44)

nf (vf p ∓ µ) =
1

exp( vf p∓µ
T ) + 1

(45)

We try to find solutions in the form χ(x , y , z) = exp(ipzz)exp(ipx)ψ(y),
where ψ(y) = (< y |n >,< y |m >,< y |l >,< y |k >).
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The first point is ψ(y) = (0, 0, 0, < y |0 >) , with dispersion relation
ε = − 3

2vf pz . There is a degeneracy connected with magnetic flux, we
can calculate it in Landau’s manner. As for the current, it is equal to:

Jz = vf
∑
deg

∫
dp

2π

(
3
2
nf (

3vf p
2
− µ)− 3

2
nf (

3vf p
2

+ µ)

)
= − µ

4π2BS

µ = V0 (46)

summation is over all degenerate modes, S is the area of the sample, V0
is a voltage, and we use relation:∫

dp(nf (vf p − µ)− nf (vf p + µ)) =
µ

vf
(47)
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Another two modes are ψ(y) = (0, 0, c1 < y |0 >, c2 < y |1 >). Zeroes of
the energy are at pz = ±2

√
2B with coefficients

(0, 0, c1, c2) = (0, 0,±
√

3
2 ,

1
2 ) + ... . Where "..." means small corrections

from non-linearity of dispersion relation. In both cases Fermi velocity is
3vf
4 . And, thus, currents are:

Jz = −vf
µ
3vf
4

3
4
BS

4π2 = − µ

4π2BS (48)

The last mode is ψ = (0, c1 < y |0 >, c2 < y |1 >, c3 < y |2 >). Zero of

the energy are at pz = 0, (0, c1, c2, c3) = (0,
√

3
5 , 0,

√
2
5 ) + ... . Fermi

velocity is 3vf
10 . After summation over all contributions we have

Jz = − µ

π2BS (49)
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We have obtained results both in relativistic physics and in solid state
physics.
In case of the extended Rarita Schwinger model we have obtained the
chiral conductivity from the Kubo formula. In the relativistic case the
coefficient in the chiral separation effect in the static limit (i.e
p → 0, ω → 0) is five times larger than for ordinary fermions and
coincides with the coefficient in front of the anomaly. In case of the
Rarita-Schwinger-Weyl semimetals we have calculated the CSE
conductivity for two different Hamiltonians. For the first one (21) we
used the Kubo formula, for the second Hamiltonian we used two
methods: the kinetic equation as well as direct calculations of the current
from system’s spectrum in uniform magnetic field. In first case
conductivity is two times larger than for ordinary Weyl fermions (27), for
the second case it is four times larger, and in both cases it doesn’t
depend neither of Fermi velocity nor of the temperature. But the last
statement doesn’t seem universal, because existence of zero energy points
affect by the temperature. Different coefficients in CSE conductivity in
all cases are connected with different symmetries of systems.
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Further investigations

In relativistic case we did not derive the conductivity explicitly for
non-zero frequencies and one can investigate it in the future. Also the
resulting expression implies a very naive way to prove that the anomaly is
independent of the temperature and chemical potential. but this question
itself requires further investigations.
Consideration of CSE for spin 3/2 fermions raised the question of the
ghost contribution (bosons with spin 1/2) in the presence of a non zero
chemical potential. In the model under consideration these degrees of
freedom do not affect physics, but in general this statement seems to be
non-universal.
We also want to mention that it will be very interesting to calculate the
chiral vortical conductivity in extended Rarita-Schwinger model, because
there are discussions about correct calculations of this quantity (validity
of the Kubo formulae, correct definition of the axial current and infrared
regularization ) for higher spin theories.
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As for Rarita-Schwinger-Weyl semimetals, the main question here is
related to the inclusion of interaction. First of all, we need to take into
account the Coulomb interaction and the effect of impurities.
Also it is easy to include the four-fermion vertex, which in this case can
lead to changes in the ground state in comparison with the
noninteracting theory. Despite the fact that the theory is
non-renormalizable, we can use natural ultraviolet cutoff associated with
the interatomic distance or some ultraviolet scale can be generated by
interaction. In this case the question about corrections to the effect is
closely connected with the question about stability of monopoles.
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Thank you for your attention!


