

The upgrade program of the BM@N experiment at NICA

Peter Senger

- Outline: > Mission: Investigating nuclear matter at neutron star core densities
 - Probing the high-density equation-of-state
 - Searching for the onset of deconfinement
 - Exploxing the role of hyperons in neutron stars
 - Upgrading the BM@N detector system

9th International Conference on New Frontiers in Physics (ICNFP 2020), 1. - 2. October 2020, Kolymbari, Crete, Greece

NICA Heavy Ion Complex NICA

beams from p to Au, heavy ion energy 1- 3.8 GeV/n (17 kG Nuclotron magnets), Au intensity \sim few 10⁶ Hz

Baryonic Matter at Nuclotron (BM@N) Collaboration BM@N

10 Countries, 20 Institutions, 246 participants

- University of Plovdiv, Bulgaria;
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;
- Tsinghua University, Beijing, China;
- Nuclear Physics Institute CAS, Czech Republic;
- CEA, Saclay, France;
- TU Darmstadt & GSI Darmstadt, Germany;
- Tubingen University, Germany;
- Tel Aviv University, Israel;
- Joint Institute for Nuclear Research;
- Institute of Applied Physics, Chisinev, Moldova;
- Warsaw University of Technology, Poland;

- St Petersburg University, Russia;
- University of Wroclaw, Poland;
- Institute of Nuclear Research RAS, Moscow, Russia
- NRC Kurchatov Institute, Moscow;
- Institute of Theoretical & Experimental Physics, NRC KI, Moscow, Russia;
- Moscow Engineer and Physics Institute, Russia;
- Skobeltsin Institute of Nuclear Physics, MSU, Russia;
- Moscow Institute of Physics and Technics, Moscow, Russia;
- Massachusetts Institute of Technology, Cambridge, USA.

Baryonic Matter at Nuclotron (BM@N) Experiment

Experiments performed at BM@N: Short-Range Correlations (SRC)

 $k < k_F$ Mean field region: Single nucleons $k > k_F$ High momentum region: Correlated pairs of nucleons, which are close together in space with a high relative momentum, but a low c.m. momentum compared to the Fermi momentum k_F SRC probe nucleonic and partonic degrees-of-freedom in nuclear systems.

Experiment at BM@N with a 4A GeV C-beam: First fully exclusive measurement in inverse kinematics probing the residual A-2 nuclear system!

$$^{12}\text{C} + \text{p} \rightarrow 2\text{p} + {^{10}}_5\text{B} + \text{n} \text{ (np SRC)}$$

 $^{12}\text{C} + \text{p} \rightarrow 2\text{p} + {^{10}}_4\text{Be} + \text{p} \text{ (pp SRC)}$

Experiments performed at BM@N: Short-Range Correlations (SRC)

 $k < k_F$ Mean field region: Single nucleons $k > k_F$ High momentum region: Correlated pairs of nucleons, which are close together in space with a high relative momentum, but a low c.m. momentum compared to the Fermi momentum k_F . SRC probe nucleonic and partonic degrees-of-freedom in nuclear systems.

Key features of the experiment:

- Suppression of final-state interactions by post-selection of nuclear fragments
- Direct measurement of the SRC pair center of mass motion

Show case:

Inverse kinematics offers the opportunity to measure SRC in short-lived neutron-rich nuclei at radioactive beam facilities, which will shed light on the properties of dense and cold matter in neutron stars.

Experiments performed at BM@N: Lambda production in C + C, Al, Cu collisions at 4A GeV

Upgrading the BM@N experiment:

Exploring nuclear matter at neutron star core densities

Neutron star mergers and heavy-ion collisions

The nuclear matter equation-of-state

The nuclear matter equation of state (EOS) describes the relation between density, pressure, temperature, energy, and isospin asymmetry

$$P = \delta E/\delta V \big|_{T=const}$$

$$V = A/\rho$$

$$\delta V/ \delta \rho = - A/\rho^2$$

$$P = \rho^2 \delta(E/A)/\delta \rho \big|_{T=const}$$

Symmetric matter (δ =0):

- \triangleright E/A(ρ_0) = -16 MeV
- > slope $\delta(E/A)(\rho_0)/\delta\rho = 0$
- ightharpoonup curvature $K_{nm} = 9\rho^2 \delta^2(E/A)/\delta\rho^2$ (nuclear incompressibility)

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

Mass-density relation of neutron stars for different EOS

T. Klaehn et al., Phys. Rev. C74: 035802, 2006. Update by D. Blaschke, priv. comm.

Observable in heavy-ion collisions: Collective flow of nucleons

semi-central Au+Au collision at 2 AGeV

Collective flow of nucleons: driven by pressure gradient in the fireball

Nuclear incompressibility from collective proton flow

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Transverse in-plane flow:

FOPI at GSI: EOS from the elliptic flow of fragments in Au+Au collisions at SIS18 energies ($\rho < 3\rho_0$)

A. Le Fevre, Y Leifels, W. Reisdorf, J. Aichelin, Ch. Hartnack, Nucl. Phys. A945 (2016) 112

Nuclear incompressibility from collective proton flow

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

Transverse in-plane flow:

Exploring the EOS with subthreshold strangeness production

Experiment: C. Sturm et al., (KaoS Collaboration) Phys. Rev. Lett. 86 (2001) 39

K⁺ meson production in Au+Au and C+C collisions at 0.8 – 1.5A GeV

Theory: QMD Ch. Fuchs et al., Phys. Rev. Lett. 86 (2001) 1974 IQMD Ch. Hartnack, J. Aichelin, J. Phys. G 28 (2002) 1649

subthreshold production: density dependent

Au+Au: strong EOS effect, C+C: no EOS effect

cancellation of systematic errors both in experiment and theory

Soft equation-of-state: $\kappa \le 200 \text{ MeV}$ Confirmation of flow measurements

Probe of the high-density EOS: subthreshold production of multi-strange hyperons

Idea: Ξ and Ω yield at subthreshold energies \sim multi-step collisions \sim density \rightarrow EOS

Strangeness production:

$$\begin{array}{lll} pp \rightarrow \text{K}^{+}\Lambda^{0}p & (\text{E}_{thr} = 1.6 \text{ GeV}) \\ pp \rightarrow \text{K}^{+}\text{K}^{-}pp & (\text{E}_{thr} = 2.5 \text{ GeV}) \\ pp \rightarrow \Xi^{-}\text{K}^{+}\text{K}^{+}p & (\text{E}_{thr} = 3.7 \text{ GeV}) \\ pp \rightarrow \Omega^{-}\text{K}^{+}\text{K}^{+}\text{K}^{0}p & (\text{E}_{thr} = 7.0 \text{ GeV}) \\ pp \rightarrow \overline{\Lambda}^{0}\Lambda^{0}pp & (\text{E}_{thr} = 7.1 \text{ GeV}) \\ pp \rightarrow \Xi^{+}\Xi^{-}pp & (\text{E}_{thr} = 9.0 \text{ GeV}) \\ pp \rightarrow \Omega^{+}\Omega^{-}pp & (\text{E}_{thr} = 12.7 \text{ GeV}) \end{array}$$

Hyperon production via multiple collisions

$$\begin{array}{c} pp \to K^{+}n\Sigma^{+} \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Sigma^{+}\Lambda^{0} \to \Xi^{0}p \\ pn \to K^{+}p\Sigma^{-} \longrightarrow \Sigma^{-}\Xi^{0} \to \Omega^{-}n \\ \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Lambda^{0}\Lambda^{0} \to \Xi^{-}p \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Sigma^{0}\Xi^{-} \to \Omega^{-}n \\ \\ pp \to K^{+}n\Sigma^{+} \longrightarrow \Sigma^{+}\Sigma^{-} \to \Xi^{-}p \\ pn \to K^{+}p\Sigma^{-} \longrightarrow \Sigma^{+}\Sigma^{-} \to \Xi^{-}p \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Lambda^{0}\Xi^{-} \to \Omega^{-}n \end{array}$$

Probe of the high-density EOS: subthreshold production of multi-strange hyperons

Idea: Ξ and Ω yield at subthreshold energies \sim multi-step collisions \sim density \rightarrow EOS

Isospin-dependent strangeness-exchange cross sections in UrQMD

G. Graef, J. Steinheimer, F. Li, M. Bleicher, Phys. Rev. C 90, 064909 (2014)

Hyperon production via multiple collisions

$$\begin{array}{c} pp \to K^{+}n\Sigma^{+} \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Sigma^{+}\Lambda^{0} \to \Xi^{0}p \\ pn \to K^{+}p\Sigma^{-} \longrightarrow \Sigma^{-}\Xi^{0} \to \Omega^{-}n \\ \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Lambda^{0}\Lambda^{0} \to \Xi^{-}p \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Sigma^{0}\Xi^{-} \to \Omega^{-}n \\ \\ pp \to K^{+}p\Sigma^{-} \longrightarrow \Sigma^{+}\Sigma^{-} \to \Xi^{-}p \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Lambda^{0}\Xi^{-} \to \Omega^{-}n \\ \\ \end{array}$$

Probe of the high-density EOS: subthreshold production of multi-strange hyperons

Idea: Ξ and Ω yield at subthreshold energies \sim multi-step collisions \sim density \rightarrow EOS

 Ω^{-} production in 4 A GeV Au+Au (BM@N energies!)

HYPQGSM calculations , K. Gudima et al.

Hyperon production via multiple collisions

$$\begin{array}{c} pp \to K^{+}n\Sigma^{+} \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Sigma^{+}\Lambda^{0} \to \Xi^{0}p \\ pn \to K^{+}p\Sigma^{-} \longrightarrow \Sigma^{-}\Xi^{0} \to \Omega^{-}n \\ \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Lambda^{0}\Lambda^{0} \to \Xi^{-}p \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Sigma^{0}\Xi^{-} \to \Omega^{-}n \\ \\ pp \to K^{+}n\Sigma^{+} \longrightarrow \Sigma^{+}\Sigma^{-} \to \Xi^{-}p \\ pp \to K^{+}p\Lambda^{0} \longrightarrow \Lambda^{0}\Xi^{-} \to \Omega^{-}n \\ \\ \end{array}$$

Multi-strange hyperons: promising observables for the EOS of symmetric matter at Nuclotron beam energies

Hyperon yield in heavy ion collisions at 4A GeV (BM@N energies): soft EOS (K=240 MeV) / hard EOS (K=350) MeV

PHQMD calculations , J. Aichelin, E. Bratkovskaya, V. Kireyeu et al., priv. comm.

Searching for the onset of deconfinement

schematic 3-stage model

nucleons with hard core and pion cloud

quark occupation function with localized (red) and delocalized (blue) modes

Searching the onset of deconfinement with multistrange hyperons

Excitation function of strangeness: $\Xi^{-}(dss),\Xi^{+}(dss),\Omega^{-}(sss),\Omega^{+}(sss)$ \rightarrow chemical equilibration at the phase boundary ?

Particle yields and thermal model fits

$$n_i = N_i/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp[(E_i - \mu_i)/T] \pm 1}$$

HADES: Ar + KCl 1.76 A GeV G. Agakishiev et al., Eur. Phys. J. A 47 (2011) 21

Searching the onset of deconfinement with multistrange hyperons

Excitation function of strangeness: $\Xi^{-}(dss),\Xi^{+}(dss),\Omega^{-}(sss),\Omega^{+}(sss)$ \to chemical equilibration at the phase boundary ?

Particle yields and thermal model fits n

$$n_i = N_i/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 dp}{\exp[(E_i - \mu_i)/T] \pm 1}$$

- ➤ Ξ⁻ production by multiple collisions including strangeness exchange
- ➤ No thermal equilibration in hadronic environment because of small hyperon-nucleon cross sections

Strategy:

measure excitation function of Ξ and Ω production. The beam energy, where thermal equilibration is reacl (or disappears), indicates onset of deconfinement

HADES: Ar + KCl 1.76 A GeV G. Agakishiev et al., Eur. Phys. J. A 47 (2011) 21

Hyperons in massive neutron stars?

 ρ/ρ_0

Measure ΛN , ΛNN , and $\Lambda \Lambda N$ interactions!

W. Weise, arXiv:1905.03955v1, to appear in JPS Conf. Proc (Lambda single particle potential in neutron star matter from Chiral SU(3) EFT interactions)

Hypernuclei production in heavy-ion collisions

central Pb+Pb/Au+Au collisions

Lines:

Thermal production (UrQMD-hydro hybrid model)

Symbols:

Coalescence results (Dubna Cascade Model, DCM-QGSM)

The discovery of hypernuclei and the precise mearurement of their life times will shed light on the ΛN , ΛNN , and $\Lambda \Lambda N$ interactions

J. Steinheimer et al., Phys. Lett. B 714 (2012) 85

BM@N upgrade for Au+Au collisions up to 4.0A GeV

Upgrade:

- > 4 stations double-sided micro-strip silicon sensors
- > 7 full stations Gas-Electron-Multiplier (GEM) chambers
- > Forward Hadron Calorimeter
- vacuum beam pipe from Nuclotron to BM@N
- > vacuum target chamber and downstream beam pipe with low material budget

The BM@N Silicon tracking system: Based on double-sided micro-strip sensors

Technical Design Report

The Silicon Tracking System as part of the hybrid tracker of the BM@N experiment

Dec. 2019

ASIC

STS XYTER v.2.1

sensors + micro cables + FEBs

Assembled mockups of the modules

Modules are in groups installed on CF trusses with mounting blocks

Front-end Board with 8 STS XYTER ASICs

GEM central tracker for heavy ion runs

- 7 upper GEM 163x45 cm² chambers produced at CERN were integrated into BM@N
- 7 lower GEM 163x39 cm² chambers were assembled, delivered to BM@N and tested

GEM 163x39 cm² chamber assembly at CERN

Setup of GEM detectors for cosmic tests

BM@N upgrade for Au+Au collisions

central Au+Au collisions at 4A GeV (QGSM generator)

momentum resolution

Physics performance simulations of the hybrid tracking system

Lambda reconstruction in 1000 central Au+Au 4A GeV (A. Zinchenko)

Much higher statistics required to see Ξ and Ω hyperons!

 $\epsilon(\Lambda) \approx 10\%$ without PID for p and π

Forward Hadron Calorimeter

Determination of:

- Orientation of the reaction plane
- Collision centrality
- FHCAL assembled and installed into BM@N setup
- Cosmic tests are under way

CBM modules MPD modules

Team of INR RAS, Troitsk

Radiation environment

max. rate 5 kHz/cm² (innermost sensors) strip size 50 μ m \cdot 6 cm = $3\cdot10^{-2}$ cm² read-out time 1 μ s \rightarrow occupancy 1.5·10⁻⁴

Beam parameters and setup at different stages of the BM@N experiment

Year	2016	2017 spring	2018 spring	fall 2021	2022	2023
Beam	d (↑)	С	Ar,Kr, C(SRC)	Kr,Xe	up to Au	up to Au
Max.inten sity, Hz	0.5M	0.5M	0.5M	0.5M	0.5M	0.5M
Trigger rate, Hz	5k	5k	10k	10k	10k	50k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + forward Si planes	7 GEM full planes + forward Si + 2 large STS planes	7 GEM full planes + 4 large STS planes
Experiment al status	technical run	technical run	technical run+physics	physics run	stage1 physics	stage2 physics

Budget 25 M€ over 4 years: 2020 - 2023 GSI/FAIR and JINR involvement in two Working Packages

WP2: Collaboration with NICA

Develop the instrumentation for NICA/BM@N and FAIR/CBM Engineering and construction of fast detectors, and development of high rate data acquisition chain and software packages for simulation and data analysis Total budget 4.61 M€

Participants: JINR (9 FTE), FAIR (8.5 FTE), U Tübingen (1 FTE), WUT Warsaw (2 FTE), Wigner Budapest (2 FTE), MEPhI (4 FTE) INR Moscow (1 FTE), NPI Prague (2 FTE)

WP7: Joint development of detector technologies

Develop a beyond state of the art CMOS pixel sensors (MAPS) for high-rate Silicon trackers for several particle physics and heavy-ion research communities in Europe and Russia for the potential upgrade of many experimental setups (e.g. at SCT, at NICA, at CERN-colliders), development of neutron detectors, detector school at BINP Total budget 1.8 M€

Participants: JINR (1 FTE), FAIR (1 FTE), DESY (1 FTE), U Frankfurt (1 FTE), IPHC Strasbourg (1 FTE), KINR Kiev (1 FTE), BINP (1 FTE)

Summary

- The upgraded BM@N experiment offers the opportunity to explore nuclear matter at neutron star core densities in heavy-ion collisions at energies of up to 3.8A GeV.
- > The research program includes:
 - the high-density equation-of-state
 - the onset of deconfinement
 - the role of hyperons in neutron stars
- Sensitive observables:
 - elliptic flow of charged particles
 - excitation function of multi-strange hyperons
 - hypernuclei
- First measurements with Au beams are expected in 2023.
- ➤ The new Silicon Tracking System at BM@N will be realized in closed collaboration with groups from the CBM collaboration as a prototype detector for the CBM experiment at FAIR, which is expected to take first beams in 2025.