QCD phase diagram and its dualities: baryon density, chiral and isospin imbalance

Roman N. Zhokhov IZMIRAN, IHEP 9th International Conference on New Frontiers in Physics (Online)

Russian Science Foundation

БАЗИС

Фонд развития теоретической физики и математики

K.G. Klimenko, IHEP T.G. Khunjua, University of Georgia, MSU

in the broad sense our group stems from Department of Theoretical Physics, Moscow State University Prof. V. Ch. Zhukovsky

details can be found in

JHEP 06 (2020) 148 arXiv:2003.10562 [hep-ph] Phys.Rev. D100 (2019) no.3, 034009 arXiv: 1904.07151 [hep-ph] JHEP 1906 (2019) 006 arXiv:1901.02855 [hep-ph] Eur.Phys.J. C79 (2019) no.2, 151, arXiv:1812.00772 [hep-ph], Phys.Rev. D98 (2018) no.5, 054030 arXiv:1804.01014 [hep-ph], Phys.Rev. D97 (2018) no.5, 054036 arXiv:1710.09706 [hep-ph] Phys.Rev. D95 (2017) no.10, 105010 arXiv:1704.01477 [hep-ph]

The work is supported by Russian Science Foundation (RSF) under grant number 19-72-00077

 Foundation for the Advancement of Theoretical Physics and Mathematics

Фонд развития теоретической физики и математики QCD Dhase Diagram and Methods

QCD at T and μ (QCD at extreme conditions)

- ▶ neutron stars
- ▶ heavy ion collisions
- ► Early Universe

Methods of dealing with QCD

- First principle calcultion
 lattice QCD
- ► Effective models
- ► DSE, FRG

.

More external conditions to QCD

More than just QCD at (μ, T)

- more chemical potentials μ_i
- magnetic fields
- rotation of the system $\vec{\Omega}$
- acceleration \vec{a}
- finite size effects (finite volume and boundary conditions)

More external conditions to QCD

- More than just QCD at (μ, T)
 - more chemical potentials μ_i
 - ▶ magnetic fields
 - ▶ rotation of the system
 - ▶ acceleration
 - finite size effects (finite volume and boundary conditions)

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q,$$

Different types of chemical potentials

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q,$$

Isotopic chemical potential μ_I

Allow to consider systems with isospin imbalance $(n_n \neq n_p)$.

$$\frac{\mu_I}{2}\bar{q}\gamma^0\tau_3 q = \nu \left(\bar{q}\gamma^0\tau_3 q\right)$$
$$n_I = n_u - n_d \quad \longleftrightarrow \quad \mu_I = \mu_u - \mu_d$$

chiral (axial) chemical potential

Allow to consider systems with chiral imbalance (difference between densities of left-handed and right-handed quarks).

$$n_5 = n_R - n_L \quad \longleftrightarrow \quad \mu_5 = \mu_R - \mu_L$$

The corresponding term in the Lagrangian is

$$\mu_5 \bar{q} \gamma^0 \gamma^5 q$$

Chiral magnetic effect

A. Vilenkin, PhysRevD.22.3080,
 K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78 (2008) 074033

$$n_{I5} = n_{u5} - n_{d5}, \qquad n_{I5} \quad \longleftrightarrow \quad \nu_5$$

Chiral imbalance n_5 and hence μ_5 can be generated in parallel magnetic and electric fileds $\vec{E} \parallel \vec{B}$

M. Ruggieri, M. Chernodub, H. Warringa et al

Chiral isospin imbalance n_{I5} and hence μ_{I5} can be generated in parallel magnetic and electric fileds $\vec{E} \parallel \vec{B}$

 μ_{I5} and μ_5 are generated by $\vec{E} \mid \mid \vec{B}$

Generation of CI in dense quark matter

Generation of Chiral imbalance in dense quark matter

Chiral imbalance could appear in dense matter

Chiral separation effect (Thanks for the idea to Igor Shovkovy)

► Chiral vortical effect

Different chemical potentials and matter content

$$\mu = \frac{\mu_B}{3}, \quad \nu = \frac{\mu_I}{2}, \quad \mu_5, \quad \nu_5 = \frac{\mu_{I5}}{2}$$

NJL model can be considered as **effective model for QCD**.

the model is **nonrenormalizable** Valid up to $E < \Lambda \approx 1$ GeV

 $\mu,T<600\,{\rm MeV}$

Parameters G, Λ, m_0

chiral limit $m_0 = 0$

in many cases chiral limit is a very good approximation

dof- quarks no gluons only four-fermion interaction attractive feature — dynamical CSB the main drawback – lack of confinement (PNJL) We consider a NJL model, which describes dense quark matter with two massless quark flavors (u and d quarks).

$$\begin{aligned} \mathcal{L} &= \bar{q} \Big[\gamma^{\nu} \mathbf{i} \partial_{\nu} + \frac{\mu_B}{3} \gamma^0 + \frac{\mu_I}{2} \tau_3 \gamma^0 + \frac{\mu_{I5}}{2} \tau_3 \gamma^0 \gamma^5 + \mu_5 \gamma^0 \gamma^5 \Big] q + \\ & \frac{G}{N_c} \Big[(\bar{q}q)^2 + (\bar{q} \mathbf{i} \gamma^5 \vec{\tau} q)^2 \Big] \end{aligned}$$

q is the flavor doublet, $q = (q_u, q_d)^T$, where q_u and q_d are four-component Dirac spinors as well as color N_c -plets; τ_k (k = 1, 2, 3) are Pauli matrices.

To find the thermodynamic potential we use a semi-bosonized version of the Lagrangian

$$\widetilde{L} = \bar{q} \Big[\mathrm{i} \partial \!\!\!/ + \mu \gamma^0 + \nu \tau_3 \gamma^0 + \nu_5 \tau_3 \gamma^0 \gamma^5 + \mu_5 \gamma^0 \gamma^5 - \sigma - \mathrm{i} \gamma^5 \pi_a \tau_a \Big] q - \frac{N_c}{4G} \Big[\sigma^2 + \pi_a^2 \Big].$$

$$\sigma(x) = -2\frac{G}{N_c}(\bar{q}q); \quad \pi_a(x) = -2\frac{G}{N_c}(\bar{q}\mathrm{i}\gamma^5\tau_a q).$$

Condansates ansatz $\langle \sigma(x) \rangle$ and $\langle \pi_a(x) \rangle$ do not depend on spacetime coordinates

$$\langle \sigma(x) \rangle = M, \quad \langle \pi_1(x) \rangle = \pi, \quad \langle \pi_2(x) \rangle = 0, \quad \langle \pi_3(x) \rangle = 0.$$

where M and π are already constant quantities.

Phase diagram, lots of plots

Chiral imbalance leads to the generation of PC in dense quark matter (PC_d)

In the early 1970s Migdal (Sawyer, Scalapino, Kogut, Manassah) suggested the possibility of **pion condensation in a nuclear matter**

A.B. Migdal, Zh. Eksp. Teor. Fiz. 61, 2210 (1971) [Sov. Phys. JETP 36, 1052 (1973)]; A. B.
 Migdal, E. E. Saperstein, M. A. Troitsky and D. N. Voskresensky, Phys. Rept. 192, 179 (1990).
 R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972); J. Kogut, J.T. Manassah, Physics Letters A, 41, 2, 1972, Pages 129-131

(In medium pion mass properties and the RMF models.) **pion condensation** with zero momentum (s-wave condensation) is **highly unlikely to be realized** in nature in **matter of neutron star.**

A. Ohnishi D. Jido T. Sekihara, and K. Tsubakihara, Phys. Rev. C80, 038202 (2009) $\ \cdot \ \cdot$

Figure: (ν, μ) phase diagram in NJL model in the chiral limit.

PC phenomenon maybe could be realized in dense baryonic matter (non-zero baryon density

K. G. Klimenko, D. Ebert
J.Phys. G32 (2006) 599-608;
Eur.Phys.J.C46:771-776,(2006)

Figure: Pion condensate in dense quark matter in NJL model.

PC phenomenon is realized in dense baryonic matter even in charge neutral and β -equilibrated case

K. G. Klimenko, D. Ebert
J.Phys. G32 (2006) 599-608;
Eur.Phys.J.C46:771-776,(2006)

physical point and electric neutrality

No PC condensation in the neutral case at the physical point

(H. Abuki, R. Anglani, M. Ruggieri etc. Phys. Rev. D **79** (2009) 034032.

There are a number of **external parameters** such as **chiral imbalance** that can generate **PC in dense quark matter**.

See small review

```
Symmetry 2019, 11(6), 778
arXiv:1912.08635 [hep-ph]
```

Special Issue "Nambu-Jona-Lasinio model and its applications" of symmetry

(Thanks to Tomohiro Inagaki)

24

Charge neutrality and $\beta\text{-equilibrium}$ can destroy the generation of PC

So it is interesting to see if chiral imbalance can generate PC in dense quark matter even in this case

 \blacktriangleright Charge neutrality and $\beta\text{-equilibrium}$ in neutron stars

► There are constraints in HIC $(n_Q = 0.4n_B)$ Hot QCD Collaboration arXiv:1812.08235 [hep-lat]

• Or β -equilibrium in neutron star mergers

Mark Alford Phys. Rev. C 98, 065806 (2018); arXiv:1803.00662 [nucl-th]

Chiral imbalance and electric neutrality

Chiral imbalance generates the charged pion condensation in dense electric neutral matter.

Astrophysics: chiral imbalance and compact stars 27

There have been discussed several mechanism of generation of chiral imbalance in neutron stars.

It is interesting in light of new and expected data on masses and radii to extend the studies and

- find the **EOS** in the presence of **chiral imbalance**

- and explore the M-R relation for neutron star with chiral imbalance

(Consideration of phase structure of dense electric neutral baryonic matter with β -equilibrium is a first step in that direction.)

Dualities

Dualities

It is not related to holography or gauge/gravity duality

it is the dualities of the phase structures of different systems

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$

 $\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$

 $\Omega(T,\mu,\mu_i,...,M,\pi,...)$

 $\Omega(T,\mu,\mu_i,...,\langle\bar{q}q\rangle,...) \qquad \qquad \Omega(T,\mu,\mu_i,...,M,\pi,...)$

The TDP (phase daigram) is invariant under Interchange of - condensates - matter content

$$\Omega(M, \pi, \mu_I, \mu_{I5})$$
$$M \longleftrightarrow \pi, \qquad \nu \longleftrightarrow \nu_5$$

 $\Omega(M, \pi, \mu_I, \mu_{I5}) = \Omega(\pi, M, \mu_{I5}, \mu_I)$

Duality in the phase portrait

Figure: NJL model results

$$\mathcal{D}: M \longleftrightarrow \pi, \quad \nu \longleftrightarrow \nu_5$$

Duality between chiral symmetry breaking and pion condensation

$$PC \longleftrightarrow CSB \quad \nu \longleftrightarrow \nu_5$$

$$\mathcal{L}_{\text{QCD}} = \sum_{f=u,d} \bar{q}_f (i\not\!\!D - m_f) q_f - \frac{1}{4} \mathcal{G}_{\mu\nu,a} \mathcal{G}_a^{\mu\nu}.$$
$$\mathcal{L}_{\text{NJL}} = \sum_{f=u,d} \bar{q}_f \Big[i\gamma^{\nu} \partial_{\nu} - m_f \Big] q_f + \frac{G}{N_c} \Big[(\bar{q}q)^2 + (\bar{q}i\gamma^5 \vec{\tau}q)^2 \Big]$$

 m_f is current quark masses

In the chiral limit $m_f = 0$ the Duality \mathcal{D} is exact

 $\begin{array}{ll} m_f: & \frac{m_u+m_d}{2} \approx 3.5 {\rm MeV} \\ {\rm In \ our \ case \ typical \ values \ of \ } \mu,\nu,...,T,.. \sim 10-100s \ {\rm MeV}, \ {\rm for \ example, \ 200-400 \ MeV} \\ {\rm One \ can \ work \ in \ the \ chiral \ limit \ } m_f \rightarrow 0 \\ m_f=0 & \rightarrow m_\pi=0 \\ {\rm physical \ } m_f \ a \ {\rm few \ MeV} \quad \rightarrow \quad {\rm physical \ } m_\pi \sim 140 \ {\rm MeV} \end{array}$

Duality between CSB and PC is approximate in physical point 0.6 0.6 (a) (b) 0.5 0.5 ApprSYM 0.4 CSB ApprSYM 0.4 CSB **CSB**_d v₅/GeV v₅/GeV PC_d 0.2 0.2 PC PC 0.1 0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6 0 v/GeV v/GeV

Figure: (ν, ν_5) phase diagram

Other Dualities

They are not that strong but still...

They could still be usefull

$\Omega(T,\mu,\nu,\nu_5,\mu_5;\ M,\pi)$

Let us assume that there is no PC

 $\pi = 0$

The TDP (phase diagram) is invariant under

 $\mu_5 \longleftrightarrow \nu_5$

Example: catalysis of CSB by chiral imbalance. there is catalysis of CSB for μ_5 so by duality for μ_{15} as well

The TDP $\Omega(T,\mu,\nu,\nu_5,\mu_5;\;M,\pi)$

Let us assume that there is no CSB M = 0

The TDP (phase diagram) is invariant under

 $\mu_5 \longleftrightarrow \nu$

Two completely different systems

Dualities

Figure: Dualities

Dualities on the lattice $(\mu_B, \mu_I, \mu_{I5}, \mu_5)$ $\mu_B \neq 0$ impossible on lattice but if $\mu_B = 0$

37

Dualities on the lattice (μ_I, T) and (μ_5, T)

 $\mu_B \neq 0$ impossible on lattice but if $\mu_B = 0$

▶ QCD at
$$\mu_5$$
 — (μ_5, T)

V. Braguta, A. Kotov et al, ITEP lattice group

▶ QCD at
$$\mu_I$$
 — (μ_I, T)

G. Endrodi, B. Brandt et al, Emmy Noether junior research group, Goethe-University Frankfurt, Institute for Theoretical Physics ()

 T_c^M as a function of μ_5 (green line) and $T_c^{\pi}(\nu)$ (black)

Uses of Dualities

How (if at all) it can be used

discussed in Particles 2020, 3(1), 62-79

A number of papers predicted **anticatalysis** (T_c decrease with μ_5) of dynamical chiral symmetry breaking

A number of papers predicted **catalysis** (T_c increase with μ_5) of dynamical chiral symmetry breaking

lattice results show the **catalysis** (ITEP lattice group, V. Braguta, A. Kotov, et al) But unphysically large pion mass

Duality \Rightarrow catalysis of chiral symmetry beaking

• Large N_c orbifold equivalences connect gauge theories with different gauge groups and matter content in the large N_c limit.

M. Hanada and N. Yamamoto, JHEP 1202 (2012) 138, PoS LATTICE 2011 (2011)

Duality

QCD at $\mu_1 \longleftrightarrow$ QCD at μ_2

- QCD with μ_2 —- sign problem free,
- QCD with μ_1 —- sign problem (no lattice)

Investigations of (QCD with μ_2)_{on lattice} \implies (QCD with μ_1)

Inhomogeneous phases (case)

Homogeneous case

 $\langle \sigma(x) \rangle$ and $\langle \pi_a(x) \rangle$ $\langle \sigma(x) \rangle = M, \quad \langle \pi_+(x) \rangle = \pi, \quad \langle \pi_3(x) \rangle = 0.$ In vacuum the quantities $\langle \sigma(x) \rangle$ and $\langle \pi_a(x) \rangle$ do not depend on space coordinate x.

in a dense medium the ground state expectation values of bosonic fields might depend on spatial coordinates

CDW ansatz for CSB the single-plane-wave LOFF ansatz for PC

$$\langle \sigma(x) \rangle = M \cos(2kx^1), \quad \langle \pi_3(x) \rangle = M \sin(2kx^1), \langle \pi_1(x) \rangle = \pi \cos(2k'x^1), \quad \langle \pi_2(x) \rangle = \pi \sin(2k'x^1)$$

equivalently

$$\langle \pi_{\pm}(x) \rangle = \pi e^{\pm 2k'x^1}$$

Duality in inhomogeneous case is shown

$$\mathcal{D}_I: \quad M \longleftrightarrow \pi, \ \nu \longleftrightarrow \nu_5, \ k \longleftrightarrow k'$$

schematic (ν, μ) -phase diagram

Nowakovski, Lianyi He et al.

schematic (ν_5, μ) -phase diagram

- exchange axis ν to the axis ν_5 ,
- ▶ rename the phases ICSB \leftrightarrow ICPC, CSB \leftrightarrow CPC, and NQM phase stays intact here

Figure: (ν, μ) -phase diagram

Figure: (ν_5, μ) -phase diagram

Two colour QCD case $\mathbf{QC}_2\mathbf{D}$

There are similar transitions:

- \blacktriangleright confinement/deconfinement
- ▶ chiral symmetry breaking/restoration

Similarity of SU(2) and SU(3) at large T

Figure 1 Polyakov loop as a function of T for three values of the baryon chemical potential.

16³x6 lattices, ma=0.01

Figure 2: Chiral condensate as a function of T for three values of the baryon chemical potential. The ordinate axis is given on a logarithmic scale.

At large T

- deconfinement
- chiral symmetry is restored

Similarity of SU(2) and SU(3) at large μ

▶ deconfinement

▶ chiral symmetry is restored

A lot of quantities coincide up to few dozens percent

SU(2)

SU(3)

Critical temperature

Phys. Lett. B712 (2012) 279-283, JHEP 02 (2005) 033

 $T_c/\sqrt{\sigma} = 0.7092(36)$

 $T_c/\sqrt{\sigma} = 0.6462(30)$

Topological susceptibility

Nucl. Phys. B 715 (2005) 461-482

 $\chi^{\frac{1}{4}}/\sqrt{\sigma} = 0.3928(40)$

 $\chi^{\frac{1}{4}}/\sqrt{\sigma}=0.4001(35)$

Shear viscosity

JHEP 1509 (2015) 082, Phys. Rev. D 76 (2007) 101701

 $\eta/s = 0.134(57)$

 $\eta/s = 0.102(56)$

Entropy density

Thermodynamic properties are similar The entropy density per gluon degree of freedom $(N^2 - 1)$, in units of T^3 , as a function of the temperature, for the gauge group $SU(N_c)$.. JHEP 1205 (2012) 135, arXiv:1111.0580 [hep-th]

Mesonic spectrum at different N_c are similar

Physics Reports 526 (2013) 93-163,

Some properties of dense medium are similar.

At asymptotically large μ

Physics Reports 526 (2013) 93-163,

$$\Delta = b\mu_B g^{-5} \exp\left(-\frac{c}{g}\right)$$

Catalysis of chiral symmetry breaking by μ_5

034309 (2010), arXiv:1512.05873 [nep-lat]

Instead of chiral symmetry $SU_L(2) \times SU_R(2)$ one has Pauli-Gursey flavor symmetry SU(4)

Two colour NJL model

$$L = \bar{q} \Big[i\hat{\partial} - m_0 \Big] q + H \Big[(\bar{q}q)^2 + (\bar{q}i\gamma^5\vec{\tau}q)^2 + (\bar{q}i\gamma^5\sigma_2\tau_2q^c) (\overline{q^c}i\gamma^5\sigma_2\tau_2q) \Big]$$

$$L = \bar{q} \Big[i\hat{\partial} - m_0 \Big] q + H \Big[(\bar{q}q)^2 + (\bar{q}i\gamma^5\vec{\tau}q)^2 + (\bar{q}i\gamma^5\sigma_2\tau_2q^c) (\overline{q^c}i\gamma^5\sigma_2\tau_2q) \Big]$$

If you use Habbard-Stratanovich technique and auxiliary fileds

$$\sigma(x) = -2H(\bar{q}q), \ \vec{\pi}(x) = -2H(\bar{q}i\gamma^5\vec{\tau}q)$$
$$\Delta(x) = -2H\left[\overline{q^c}i\gamma^5\sigma_2\tau_2q\right] = -2H\left[q^TCi\gamma^5\sigma_2\tau_2q\right]$$
$$\Delta^*(x) = -2H\left[\bar{q}i\gamma^5\sigma_2\tau_2q^c\right] = -2H\left[\bar{q}i\gamma^5\sigma_2\tau_2C\bar{q}^T\right]$$

Condensates are

$$\langle \sigma(x) \rangle = M, \quad \langle \pi_1(x) \rangle = \pi_1, \quad \langle \Delta(x) \rangle = \Delta, \quad \langle \Delta^*(x) \rangle = \Delta^*.$$

The TDP is invariant with respect to the so-called dual transformations \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_3 ,

$$\mathcal{D}_1: \quad \mu \longleftrightarrow \nu, \quad \pi_1 \longleftrightarrow |\Delta|$$

 $\mathcal{D}_2: \quad \mu \longleftrightarrow \nu_5, \quad M \longleftrightarrow |\Delta|$

 $\mathcal{D}_3: \quad \nu \longleftrightarrow \nu_5, \quad M \longleftrightarrow \pi_1$

Duality in the phase portrait

PC_d phase and diquark condensation

- PC_d phase has been predicted without possibility of diquark condensation
- Diquark condensation can take over the PC_d phase
- In two colour case diquark condensation is in a sense even stronger than in three colour case and starts from μ > 0

 PC_d phase is unaffected by BSF phase in two color case. Maybe one can infer that it is the case also for 3 color QCD Based on the duality one can show that there is no mixed phase, i.e. two non-zero condensates simultaneously.

This greatly simplifies the numeric calculations.

▶ Phase diagram is **highly symmetric** due to **dualities**

The **whole phase diagram**, including diquark condensation, **in two color case** can be obtained from the results of **three color case** without any diquark condensation.

Duality between CSB and PC was found in

- In the framework of NJL model

- In the large N_c approximation (or mean field)

- In the chiral limit

 $\mathcal{D}_3: \quad \psi_R \to i\tau_1 \psi_R$ $\mu_I \leftrightarrow \mu_{I5}$

 $\bar{\psi}\psi \leftrightarrow i\bar{\psi}\gamma^5\tau_1\psi$

 $M \longleftrightarrow \Delta, \qquad \nu \longleftrightarrow \nu_5, \quad \mu_I \longleftrightarrow \mu_{I5}$

$$\begin{split} &i\bar{\psi}^C\sigma_2\tau_2\gamma^5\psi\leftrightarrow i\bar{\psi}^C\sigma_2\tau_2\gamma^5\psi, \quad \bar{\psi}^C\sigma_2\tau_2\psi\leftrightarrow \bar{\psi}^C\sigma_2\tau_2\psi\\ &\bar{\psi}\tau_2\psi\leftrightarrow \bar{\psi}\tau_3\psi, \quad \bar{\psi}\tau_1\psi\leftrightarrow i\bar{\psi}\gamma^5\psi, \quad i\bar{\psi}\gamma^5\tau_2\psi\leftrightarrow i\bar{\psi}\gamma^5\tau_3\psi \end{split}$$

There is also \mathcal{D}_1 and \mathcal{D}_2

Dualities was found in

- In the framework of NJL model non-pertubartively (or beyond mean field)

- In QC_2D non-pertubartively (at the level of Lagrangian)

QCD Lagrangian is

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi + \bar{\psi}\Big[\mu\gamma^{0} + \frac{\mu_{I}}{2}\tau_{3}\gamma^{0} + \frac{\mu_{I5}}{2}\tau_{3}\gamma^{0}\gamma^{5} + \mu_{5}\gamma^{0}\gamma^{5}\Big]\psi$$

$$\mathcal{D}: \quad \psi_R \to i\tau_1 \psi_R$$
$$\mu_I \leftrightarrow \mu_{I5}$$

 $\bar{\psi}\psi \leftrightarrow i\bar{\psi}\gamma^5\tau_1\psi$

 $M \longleftrightarrow \Delta, \qquad \nu \longleftrightarrow \nu_5, \quad \mu_I \longleftrightarrow \mu_{I5}$

$$\begin{split} & i\bar{\psi}^C\sigma_2\tau_2\gamma^5\psi\leftrightarrow i\bar{\psi}^C\sigma_2\tau_2\gamma^5\psi, \quad \bar{\psi}^C\sigma_2\tau_2\psi\leftrightarrow \bar{\psi}^C\sigma_2\tau_2\psi\\ & \bar{\psi}\tau_2\psi\leftrightarrow \bar{\psi}\tau_3\psi, \quad \bar{\psi}\tau_1\psi\leftrightarrow i\bar{\psi}\gamma^5\psi, \quad i\bar{\psi}\gamma^5\tau_2\psi\leftrightarrow i\bar{\psi}\gamma^5\tau_3\psi \end{split}$$

Duality was found in

 In the framework of NJL model non-pertubartively
 (beyond mean field or at all orders of N_c approximation)

► In QCD non-pertubartively (at the level of Lagrangian)

$\mathcal{D} \in SU_R(2) \in SU_L(2) \times SU_R(2)$

 $\mu_I \leftrightarrow \mu_{I5}$

$M \neq 0$ breaks the chiral symmetry

Duality \mathcal{D} is a remnant of chiral symmetry

- (μ_B, μ_I, ν₅, μ₅) phase diagram was studied PC in dense matter with chiral imbalance in in dense electic neutral matter in β-equilibrium
- ▶ It was shown that there exist dualities
- ▶ There have been shown ideas how dualities can be used
- Duality is not just entertaining mathematical property but an instrument with very high predictivity power
- ▶ Richer structure of **Dualities in the two colour case**
- Dualities have been shown non-perturbarively