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Cosmological scenarios without initial singularity

o Motivation: modelling the early Universe dynamics without the initial
singularity (Big Bang), e.g. scenarios with a cosmological bounce or Genesis.

Matter Contraction /

Decelerated expansion

Matter Expansion H Accelerated expansion

t t

o Specific properties: both scenarios imply violation of the Null Energy
condition (NEC)
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Generalized Galileon theories / Horndeski theories

G.Horndeski, Int.J. Theor.Phys. 10, 363 (1974)

Lagrangian of the theory

S = /d4X\/—g(£2+£3+£4+£5),

Lo— F(ﬂ'7X)’
£3 = K(F,X)Dﬂ',

L4 = —Ga(m, X)R + 2Gax(m, X) [(Dw)z - www"] :

1 . .
Ls = Gs(m, X)G*'m,p,,, + §G5x [(DW)3 — 30nm,,, T + 27T;u,,7r’“”7r;p”] ,

where 7 is a scalar field, X = g7 .7, Gix = 0G;/0X.

o EOMs are second order (hence, no Ostrogradsky ghost) — 2+ 1 DOFs.

@ NEC can be violated with no pathologies arising at the linearized level.
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Beyond Horndeski (GLPV)

5 / d*xy/ =g (L2 + L3+ Lo+ Ls + L)
L4 = —Ga(m, X)R + 2Gsx(m, X) [(Dﬂ)z - 71';;“,71'”“’} )
1 . .
Ls = Gs(m, X)G*'m,p,,, + §G5x [(Ehr)3 — 30nm,,,mH + 271';”1,71"“”71';;] ,

v /ll/ /o_
Lpy = Fa(m, X)e'P eV P om \T0 1T Tppr

o1 !
+Fs(m, X)e P et Y P T T i T T T

v

M.Zumalacarregui, J.Garcia-Bellido, Phys.Rev. D 89 (2014)
J.Gleyzes, D.Langlois, F.Piazza, F.Vernizzi, Phys.Rev.Lett. 114 (2015)

o EOMs are third order, BUT still no extra DOFs (Degeneracy Feature).

o Safe NEC violation is possible.

o Further extension to Degenerate Higher Order Scalar-Tensor (DHOST)
theories D. Langlois, K. Noui, JCAP 02 (2016).
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Stability at the linearized level

o Background set-up: a homogeneous and isotropic setting m = mp(t) with a
spatially-flat FLRW geometry.
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SO = [dtd3x a [QT (hT>2 FT  (0khT)? + Gs? —fs(voj

a2

67’ 1d¢ a gr(gr + D)
gs— 62 +3g7—a ]:S__E_]:Tﬂ ng

¥, ©, Gy v Fr are some expressions in terms of Lagrangian functions.
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32
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G672 1d¢ _ aG7(gr + D)
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¥, ©, Gy v Fr are some expressions in terms of Lagrangian functions.

]:T 2 -FS

@ Sound speeds squared for tensor and scalar modes: c72- = o s g
T S

Stability and (sub)luminality conditions

Gr, Fr>€¢>0, Gs,Fs>e¢>0, Fr<Gr, Fs<Gs
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Stable non-singular cosmological solutions in beyond

Horndeski theory: a construction technique

A construction technique for stable non-singular cosmologies:
o Explicit choice of the Hubble parameter H(t) and mp(t) = t:

Matter Contraction /

Meatter Expansion

H 00

t

o Reconstruction of the Lagrangian functions F, G, Gs, F4 and Fs,
which comply with the following conditions:
(a) background EOM
(b) stability and (sub)luminality conditions (G > Fr >0, Gs > Fs > 0)
(c) * specific form of the asymptotics of the theory
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Bouncing solution in beyond Horndeski theory: an example
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Bouncing solution in beyond Horndeski theory: an example
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o Specific feature of the bouncing solution: we chose G =1 and F =1 at

. F .
all times — ¢ = —gT =1 at all times.
T
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Bouncing solution in beyond Horndeski theory: an example
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o Specific feature of the bouncing solution: we chose G =1 and F =1 at

. F .
all times — ¢ = —gT =1 at all times.
T

o The Lagrangian was constructed for m,(t) = t (which is always possible to
achieve on a single solution).
Do tensor modes remain safely (sub)luminal even in the vicinity of

the solution with mp(t) =t?
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Phase space (7, ) around the solution with 7,(t) =t

Variance (1 — c&(m, 7)) of the speed squared of tensor modes in the phase space (r, )

for our bouncing model with ¢ = 1 on the solution.
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o
The bouncing solution with 75(t) = t lies right on the verge of the domain with

superluminal tensor modes.
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Phase space (7, ) around the solution with 7,(t) =t
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The modified bouncing solution is safely away from the superluminal domain.
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Adding extra matter

What happens with the bouncing solution and its stability if one adds
another matter component into the cosmological set-up?
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What happens with the bouncing solution and its stability if one adds
another matter component into the cosmological set-up?

o Let us add an ideal fluid: T, = (p+ p)uuty — Pguv
o Background Einstein equations get modified

o Tensor modes remain unchanged (Gy and F7 do not involve the Hubble
parameter)

o Scalar sector: additional mode du; = 9;V (velocity potential)

1 .
@, = /dt d3x 2 [GAB\'/A\'/B — SFasViAVIVELL = v =y
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Adding extra matter

What happens with the bouncing solution and its stability if one adds
another matter component into the cosmological set-up?

o Let us add an ideal fluid: T, = (p+ p)uuty — Pguv
o Background Einstein equations get modified

@ Tensor modes remain unchanged (Gy and F7 do not involve the Hubble
parameter)

o Scalar sector: additional mode du; = 9;V (velocity potential)

1 .
@, = /dtd3x a3 [GAB\'/A\'/B — SFasViAVIVELL = v =y

Stability conditions

Gr + D7

Gr, Fr>e>0, Gs>e>0, Fs> 202
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Adding extra matter

1 .
s = /dt d*xa® [GAB\'/A\'/B — S FasVivAV VB} L ovi=¢ V=Y

Stability conditions

Gr + D7

gr, Fr>e>0, Gs>e>0, Fs> 02
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Adding extra matter

1 .
57(53)( = /dtd3X a |:GAB\./A\./B — —2FABV,' VAV' VB:| R vi= ¢, v: = Y
a

Stability conditions

Gr + D7
202

gr, Fr>e>0, Gs>e>0, Fs>

Sound speeds for scalar modes
1 1
C§(1,2) = 5(“3 aF A) 3 5 \/ (U_g - A)Z aF B

_Fs G7(g7 +2Dr) (Dr)?
A= @ (P+P) 295@2 ’ 2g562

u? = w = const — is the sound speed in the absence of gravity (p = wp)

B = 4u3(p+ p)
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Adding extra matter

1 .
57(53)( = /dtd3X a |:GAB\./A\./B — —2FABV,' VAV' VB:| R vi= ¢, v: = Y
a

Stability conditions

Gr + D7
202

gr, Fr>e>0, Gs>e>0, Fs>

Sound speeds for scalar modes
1 1
C§(1,2) = 5(”3 aF A) 3 § \/ (UE - A)Z aF B

_Fs G7(g7 +2Dr) (Dr)?
A= @ (P+P) 295@2 ’ 2g562

u? = w = const — is the sound speed in the absence of gravity (p = wp)

2
Horndeski case: c§(1)|D:0 = ;;j - (pz—gsp) g@lzv C§(2)|D:0 = u?

B = 4u3(p+ p)
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Adding extra matter: radiation u? = 1/3

06

Csmax?(w=1/3)
04}
----- Csmax?(w=0.1)
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Left panel: Sound velocities squared at p = 0.1 (in Planck units) as functions of 7 for
w = u? = 1/3 (radiation) at 7 = 1.

Right panel: Maximum values of the larger sound velocity squared, max, Cé(l)(ﬂ', p), as
function of p (in Planck units) for w = u? = 1/3 (radiation) and w = u? = 0.1, both at
=1

Even though cs(;) may be substantially larger than us at large p, it does not exceed 1
in entire phase space (7, p) provided that w = u? is not too large.
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Adding extra matter: u? = 0.75 and u? = 0.99

Left panel: Phase space (7, p) for w = 3/4, where p is in Planck units. Solid
green region is subluminal and stable. Instability region (c§(2) < 0) is shown in
blue, whereas superluminal region (C§(1) > 1) is shown in purple. The purple
region is inside the blue one, so superluminality is actually not problematic.

Right panel: Same as in the left panel, but for w = 0.99. In the red region outside
the blue one perturbations are stable and superluminal, c§(2) > 0, C§(1) > 1.

01/10/2020 14 /18



Adding extra matter: u? =1

E =

Sound speeds for scalar modes

1 1
c§(1,2) = 5(u-f +A)+ 5 (WZ—A2+B

G1(Gr + 2D7)
2Gs02 ’

(D7)
26502

].'
A=Z2—(p+p)

B = 4u3(p+ p)
Gs
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Adding extra matter: u

Sound speeds for scalar modes

1
c§(172) 2( +A)+ \/(u2 A2+ B

_ Fs G7(97 +2D7) (D7)
Asg T T e 20507
o Assume that without matter (p = p = 0) the setup is stable —
C§(2) = .Fs/gs >0

B =4ug(p+p)
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Sound speeds for scalar modes

1
c§(172) 2( +A)+ \/(u2 A2+ B

_ Fs G7(97 +2D7) (D7)
Asg T T e 20507
o Assume that without matter (p = p = 0) the setup is stable —
C§(2) = fs/gs >0

o Adding small amount of matter does not ruin the stability (cg(z) > 0 by
continuity)

B =4ug(p+p)
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Sound speeds for scalar modes

1
c§(172) 2( +A)+ \/(u2 A2+ B

Fs G7(97 + 2D7) (Dr)?
— IS5 _ FTIT T 7T —4
A Gs (p + P) 26502 > B = Us(p +pP )2g 02
o Assume that without matter (p = p = 0) the setup is stable —
C§(2) = fs/gs >0

o Adding small amount of matter does not ruin the stability (cg(z) > 0 by
continuity)

o BUT since B > 0, it leads to superluminality, C§(1) >1
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Adding extra matter: u

Sound speeds for scalar modes

1
cg(m) 2( +A)+ \/(u2 A2+ B

Fs G7(97 + 2D7) (Dr)?
— IS5 _ FTIT T 7T —4
A Gs (p + P) 26502 > B = Us(p +pP )2g 02
o Assume that without matter (p = p = 0) the setup is stable —
C§(2) = fs/gs >0

o Adding small amount of matter does not ruin the stability (cg(z) > 0 by
continuity)

o BUT since B > 0, it leads to superluminality, cé(l) >1

For u? = 1, adding even small amount of matter to stable beyond
Horndeski cosmology makes one of the modes superluminal, C§(1) > 1,

while keeping the setup stable, c§(2) > 0.
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Conclusions

o The completely stable bouncing solution in beyond Horndeski theory
remains safely stable and subluminal upon adding a small amount of
matter like radiation (w < 1/3)

o Adding different types of matter with large enough w and/or large
enough amounts of extra matter results in the reappearance of
superluminality

o Any beyond Horndeski model (in a cosmological setting) becomes
superluminal upon adding even small energy density of extra matter
with the luminal flat-space sound speed, us = 1 (or almost luminal us)
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superluminality

o Any beyond Horndeski model (in a cosmological setting) becomes
superluminal upon adding even small energy density of extra matter
with the luminal flat-space sound speed, us = 1 (or almost luminal us)

Thank you for your attention!
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No-go theorem in Horndeski theory

5@ :/dtd3x a3 [QS_T (hT>2 ;EZ (8kh ) +Gs? - (VC) ]

_1d¢ df
Fs = St FT — Fri a(Fs+Fr)>0

Fs>e>0, Fr>e>0 — iy, {(tr) =0

By definition:
_ a7’
&= ©

In Horndeski theories one cannot make £(t) behave in a way suggested by

stability conditions, hence, there are always gradient instabilities arising.
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Appendix: coefficients in the quadratic action

G = 2Gy — 4Gax X + G X — 2HGsx X,

Fr =2Gs — 2Gsx Xit — Gs X,

D = —2F, X7 — 6HFsX?,

O = —Kx X7t 4+ 2G4H — 8HG4x X — 8HGyxx X2 + Gan't + 2Garx X7
— 5H? Gsx X7t — 2H? Gsxx X270 + 3HGs X + 2HGs.x X?

+ 10HF4X? 4+ 4HF4x X3 + 21H? Fs X% + 6 H? Fsx X3,

Y = FxX + 2Fxx X% + 12HKx X7 + 6 HKxx X?7 — Kz X — Krx X?
— 6H? Gy + 42H? Gax X + 96 H? Gaxx X? + 24H? Gaxxx X3

— 6HG 7 — 30HG4rx X7t — 12HGarxx X270 + 30H3 Gsx X7

+ 26 H3 Goxx X2 7 + 4H3 Gsxxx X371 — 18H? G X — 27TH? G x X2
— 6H?Gsrxx X3 — 90H?Fu X2 — T8H? F4x X3 — 12H? Faxx X*

— 168H3 Fs X7 — 102H3 Fsx X371 — 12H3 Fsxx X*7.

01/10/2020 18 /18



