

[•]UCL

Experimental ttH($H \rightarrow bb$) Status

Experimental Convenors: Chris Neu (CMS), **Simon Dean** (ATLAS) Theory Convenors: Laura Reina, Michael Spira

> Inauguration workshop of the LHC Higgs Cross Section Working Group, Freiburg 12/04/2010

Simon Dean

• ATLAS

Resources

- Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics (CERN-OPEN-2008-020, December 2008).
- CMS
 - CMS Physics Technical Design Report, Volume II: Physics Performance (*Phys. G: Nucl. Part. Phys.* 34 995, April 2007).

[▲]UCL SM Higgs Production and Decay

- $ttH(H\rightarrow bb)$
 - for m_H~115-130 GeV with σ*Br ~ 0.2-0.4 pb
 - expected contribution to Higgs discovery in low mass range
 - access to top and bottomYukawa couplings
 - sensitivity studies use full detector simulations and assume centre-of-mass energy of 14 TeV
 - ATLAS integrated luminosity 30 fb⁻¹
 - CMS integrated luminosity 60 fb⁻¹

Final States

- Backgrounds:
 - reducible: tt+jets
 - irreducible: ttbb from QCD or EW
 - other backgrounds: W+jets, tW and QCD multijet production not considered (negligible if 4 b-tags requirement applied)

- Final states grouped by W boson decays
 - all-hadronic: highest branching fraction with 43% but difficult to trigger on
 - fully-leptonic: simpler signature to trigger but branching fraction of 5% very low and two neutrinos prevent top mass reconstruction
 - semi-leptonic: good compromise with branching fraction 28% (excluding taus)
 - complex final state: one isolated lepton (trigger), high jet multiplicity (6 jets) with 4 b-tags, missing energy from neutrino

UCL

- Analyses consist of preselection followed by reconstruction of top quark pairs and Higgs boson
 - ATLAS uses three different approaches: cut-based, pairing likelihood, constrained fit
 - CMS follows pairing likelihood approach
- trigger requirement: single lepton trigger

Preselection

- offline selection
- exactly one isolated lepton
 - ATLAS: $p_T > 20/25$ GeV for e/μ , $|\eta| < 2.5$
 - CMS: $p_T > 20 \text{ GeV}$,
- high multiplicity jet selection
 - ATLAS: at least 6 jets (cone algorithm $\delta R = 0.4$) with $|\eta| < 5.0$ and $p_T > 20 \text{ GeV}$
 - CMS: 6 or 7 jets (cone algorithm $\delta R = 0.5$) with $|\eta| < 3.0$ and $p_T > 20 \text{ GeV}$
 - Jets with 10 GeV $< p_T < 20$ GeV allowed if there are two associated tracks
- at least 4 b-tagged jets
 - ATLAS applies a "loose" b-tag at this stage:
 - loose b-tag: eff ~ 85% and light (charm) jet rejection = 8.6(2.4)
 - tight b-tag: eff ~ 65% and light (charm) jet rejection = 60(6)
 - CMS applies a b-tag with 70% efficiency

5

UCL

ATLAS Cut-based

- Tight b-tagging applied
- Hadronic W: candidates from all pairs of jets excluding the highest four b-tagged jets
- Leptonic W: p_z (neutrino) determination from lepton and missing ET constraining invariant mass to mass of W
- Mass window cuts: hadronic W and top quark candidates within ± 25 GeV of their nominal masses
- tt system: select combination of two b-jets and W boson candidates which minimises:

$$\chi^2 = \left(\frac{m_{jjb} - m_{top}}{\sigma_{m_{jjb}}}\right)^2 + \left(\frac{m_{lvb} - m_{top}}{\sigma_{m_{lvb}}}\right)^2$$

with $\sigma_{mjjb} = 13 \text{ GeV}, \sigma_{mlvb} = 19 \text{ GeV}$

• Higgs: remaining b-jets assigned to Higgs decay, only events in low mass range of 90 - 150 GeV are considered to estimate significance

Accepted
$$\sigma_{signal} = (1.00 \pm 0.03)$$
 fb
S:B = 0.11

Irreducible background contribution (ttbb): 46%

- Pairing Likelihood:
 - several topological distributions of top system as input for a likelihood: m_{jj} , m_{jjb} , m_{lvb} , $\delta R(qq, b)$, $\delta R(l,b)$, angle(j,j)
 - combination which maximises the likelihood output is used, remaining b-jets associated to Higgs decay → rejection of combinatorial background

```
Accepted \sigma_{signal} = (1.20 \pm 0.04) \text{ fb}
S:B = 0.10
```

Irreducible background contribution (ttbb): 45%

- Constrained Fit:
 - fit to adjust lepton and jet momenta and missing ET to give W and top quark masses
 - two-step likelihood:
 - χ^2 output of fit, event kinematics, jet charge and b-tag weights (only "loose" requirements for candidates) used as input
 - signal events then separated from background events in second likelihood step
 - rejection of combinatorial and physics background

```
Accepted \sigma_{\text{signal}} = (1.30 \pm 0.05) \text{ fb}
```

S:B = 0.12

Irreducible background contribution (ttbb): 50%

Comparison of ability to correctly identify objects in event for the three analyses at their working points:

ATLAS Approaches Comparison

Cut of $90 \text{ GeV} < m_{bb} < 150 \text{ GeV}$

UCL

applied

	Cut Based	Pairing likelihood	Constrained fit
b jet from Hadronic top correct	$44.4 \pm 1.1\%$	49.2±1.1%	51.0±1.5%
b jet from Leptonic top correct	$50.5 \pm 1.2\%$	$57.4 \pm 1.1\%$	$56.2 \pm 1.5\%$
Higgs boson jets correctly chosen	$29.4 \pm 1.0\%$	$34.0{\pm}1.0\%$	32.0±1.4%
Four b quarks correct	$23.3 \pm 1.0\%$	$27.5 \pm 1.0\%$	27.1±1.3%
Higgs boson mass peak resolution, GeV	22.8 ± 1.6	20.1±1.1	22.3 ± 2.1
Signal Efficiency	$2.04 \pm 0.05\%$	$2.32 \pm 0.05\%$	2.49±0.07%
Signal to background	0.110 ± 0.014	0.103 ± 0.014	0.123±0.019
s/\sqrt{b} , 30fb ⁻¹	1.82	1.95	2.18

8

UCL

- All decays (all-hadron, semi-leptonic, dilepton) considered
 - Semi-leptonic analysis described here

CMS Likelihood Approach

- Leptonic W: p_z (neutrino) determination from lepton and missing ET constraining invariant mass to mass of W
- Use likelihood to choose best tt system, based on masses, b-tagging and event kinematics:

$L_{Event} = L_{Mass} \times L_{bTag} \times L_{Kine}.$

- Two remaining jets with highest btagging discriminator comprise the Higgs
- b-tagging then tightened to reject background

120 GeV Higgs working point:

Accepted
$$\sigma_{signal} = (1.27 \pm 0.06)$$
 fb

S:B = 0.08

Irreducible background contribution (ttbb): 40%

Simon Dean

[•]UCL

Systematic Uncertainties

- Systematic uncertainties due to detector effects
 - jet uncertainties (jet energy and b-tagging) → crucial impact on reconstruction of tt system and correct identification of b-jets used for analysis
 - ATLAS table of systematics

Source		Cut-based		Likelihood		Constrained fit	
		signal	background	signal	background	signal	background
	energy scale	± 9%	$\pm 5\%$	$\pm 9\%$	$\pm 14\%$	± 9%	$\pm 8\%$
Jet	resolution	$\pm 0.3\%$	$\pm 7\%$	$\pm 1\%$	$\pm 5.5\%$	$\pm 5\%$	$\pm 14\%$
	b-tag	$\pm 16\%$	\pm 20 %	$\pm 18\%$	$\pm 20\%$	$\pm 16\%$	$\pm 20\%$
	b mis-tag	$\pm 0.8\%$	$\pm 5\%$	$\pm 1.1\%$	± 3%	$\pm 3\%$	$\pm 10\%$

- CMS uses standard systematics
 - Jet energy scale: 3-10% depending on p_T
 - Jet resolution: 10%
 - b-tagging: 4%
 - light-jet rejection: 10%
 - Luminosity: 3%
- theoretical uncertainties: large for signal and background but can be reduced by making direct measurements
- Background estimation from data necessary!

≜UCL

More Recently

- Jet studies within ATLAS have shown that $anti-k_T$ is more effective than cone.
- Recent publication "Fat Jets for a Light Higgs" (Plehn, Salam, Spannowsky)
- Look for hard jets (p_T>200 GeV)
- Use subjet techniques to identify highly-boosted hadronic tops and Higgs
- Predicts a boost of signal significance from ~2 to ~4-5
- Reduced systematic errors from jet energy scale, b-tagging

Simon Dean

- Accepted signal cross-section of ~1 fb can be found with statistical significance of ~2 before systematics considered
- Much lower (~0.4-0.5) after systematics are considered
- Broad Higgs mass peak (due to combinatorial background) on top of large backgrounds
- Large systematic uncertainties → background normalisation from data!
- Possible improvement when looking at highly-boosted regime...

Simon Dean