Charged Higgs Boson Cross Sections: Status Report from the Experiments

Martin Flechl Freiburg, April 12, 2010

Albert-Ludwigs-Universität Freiburg

REIBURG

- Summarizing the recent ATLAS efforts
- H+ Cross Sections, Branching Ratios
- Uncertainties
- Dependence on \sqrt{s}

+ Status (Experiments)

3)

Three ingredients for H+ cross sections:

- σ(ttbar) ATLAS: Moch et al.
- σ(gb→tH+) Semi-public code (Tilman Plehn) NLO QCD+SUSY; 5FS
- BR(t→bH+), BR(H+→...) FeynHiggs 2.6.5
- All done for 7, 10, and 14 TeV

Cross Section, mh-max

- (pp→tt→bH+bW)
 - for $m_{H^+} \leq mtop$ =2* (tt)*BR(t \rightarrow bH+)*(1-BR(t \rightarrow bH+))
- $(gb \rightarrow tH+)$ [w/o intermediate
 - for m_{H+} >> mtop
- (incoherent) sum of both f for m_{H+} \approx mtop f
- Ingredients:
 - (tt): Moch et al. (401.6 pb)
 - BR(t→bH+): FeynHiggs 2.6.5
 - $(gb \rightarrow tH+)$: Code from Tilman Plehn, CTEQ6.6M

Branching Ratio, mh-max

- BR(H+→...): FeynHiggs 2.6.5
- tan β: 1...70
- m_{H+}: 100...600 GeV

IBURG

Scenarios A & B

Scenarios for H+ to SUSY

Designed for $H^+ \rightarrow {}_{i}^{+}{}_{j}^{0} \rightarrow 3$ leptons + X study M_A=390 GeV M_SUSY=1000 GeV

A_t=A_b=2000 GeV	M_3=800 GeV
∆_stau (L,R)=250 GeV	M_slepton
L,R)=150 GeV	
A_tau=A_l=0	
Scenario A: mu=135	GeV, M_2=210 GeV; tan β =7 /15
Scenario B:mu=200	GeV, M_2=310 GeV; tan β =7 /15

Scenario	Cross Section [pb] at \sqrt{s} =		$\mathrm{BR}(H^+ \to \chi^+ \chi^0)$	
	7 TeV	10 TeV	14 TeV	
A1	0.0039	0.017	0.049	0.73
A2	0.0074	0.028	0.082	0.56
B 1	0.0038	0.017	0.048	0.35
B2	0.0072	0.027	0.079	0.19

Scale Uncertainties

• σ : Scale Uncertainties (μ_{F}, μ_{R})

- low mass: from ttbar cross section: 3% [Moch09]
- high mass: < 20% at 14 TeV [Plehn03]. Have reinvestigated for other \sqrt{s} :
 - Uncertainties are almost identical: about +20% / -15%, small dependence on mH+ [when varying $m_{av}/4 < \mu < 4 m_{av}$]
- [Berger05]: when varying over a very large range $(m_{av}/10 < \mu < 10 m_{av})$,

 $\mu_{\rm F}$, $\mu_{\rm R}$ should be varied independently and uncertainties can be huge. Still, they advocate a 20% total scale uncertainty.

M. Flechl, 2010/04/12: H+ Status (Experiments)

Other Systematic Uncertainties

- σ: SUSY loop corrections
 - Leading corrections taken into account (Δb), rest negligible [Plehn03]
- BR: Loop corrections to tbH+ vertex, running of c and s masses: [communication with Sven Heinemeyer]
 - $\Delta BR(t \rightarrow bH+)$ / BR < 10%
 - $\Delta BR(H+\rightarrow \tau \nu)$ / BR < 5%
 - $\Delta BR(H+\rightarrow tb, cs)/BR < 10\%$

BUR

PDF Uncertainties

- CTEQ 6.6M, 44 error PDFs
- Results PDF Uncertainties:
 - 7 TeV: 11-30%
 - 10 TeV: 7-20%
 - 14 TeV: 5-14%
 - Do not depend on tan β; increase with mH+; decrease with √s

4FS vs 5FS

5FS (Plehn03) vs 4FS (Dittmaier/Krämer/Spira/Walser09)

- 4FS \approx 0.7*5FS; Barely within each others scale uncertainties;
- Possible explanations:
 - PDF uncertainties not included in the comparison;
 - scale choice not optimal for 5FS [Plehn03] \rightarrow shifts green band 5-10%
 - b PDF uncertainties underestimated

$gb \rightarrow tH + as f(\sqrt{s})$

Tilman's code – $\sigma(\sqrt{s})$: 10 vs 14 TeV, f(tan β)

- The ratio $\sqrt{s(10 \text{ TeV})}/\sqrt{s(14 \text{ TeV})}$ is constant wrt tan β .
- All results for 10 TeV can easily be scaled to any other √s → scale factor is only f(m_{H+}).
- Δb corrections can be applied afterwards (very fast)

$gb \rightarrow tH+:$ Scaling with \sqrt{s}

 Scale factors for different √s (wrt the 14 TeV-cross section)

M. Flechl, 2010/04/12: H+ Status (Experiments)

Summary

- ATLAS Status:
 - All important numbers calculated, framework set up
 - So far using 5FS calculations
 - Now need to agree on common input and re-run
- To do for H+:
 - Closer look at 4FS vs 5FS (see Sami's talk)
 - Reinvestigate PDF uncertainties (compare sets)