## Scintillator Optimization Study

- Goal is to finalize the exact shape of the scintillators
- Required for final quotes on scintillator production
- Required as input for the module grid design
- Scintillator production should start next year



## Method



- Optical simulations based on the old POLAR ones with:
- Scintillator
- Reflective foil (vikuiti)
- Photon detector (SiPM or PMT)
- Glass window
- Optical pad
- Grid
- + all optical properties

#### Check if it works for POLAR setup



hitmap

- We see the optical cross talk (through glass window and optical pad)

- Total number of optical photons reaching the PMT is 3.45 / keV

- Matches old simulations

Total optical photons / keV



### Cross talk in POLAR



#### **Position dependency**

|                                                                                   | Constant<br>Mean<br>Sigma | $\begin{array}{c} 126.9 \pm 5.2 \\ 1.952 \pm 0.010 \\ 0.2913 \pm 0.0074 \end{array}$ | Top<br>(7cm)      |
|-----------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------|-------------------|
| <ul> <li>Difference in light yield between top<br/>and bottom of ~3%</li> </ul>   |                           |                                                                                      |                   |
| - During beam tests we could not<br>reach the level of precision to check<br>this | Constant<br>Mean<br>Sigma | $\begin{array}{c} 127.5\pm5.5\\ 2.006\pm0.010\\ 0.2919\pm0.0082\end{array}$          | Middle<br>(0 cm)  |
| - Should ideally be minimized                                                     |                           |                                                                                      |                   |
|                                                                                   | Constant<br>Mean<br>Sigma | $\begin{array}{c} 125.7 \pm 5.5 \\ 2.022 \pm 0.010 \\ 0.2955 \pm 0.0086 \end{array}$ | Bottom<br>(-7 cm) |

# Simple POLAR-2 design

First design:

- Keep everything equal about the scintillator
- Remove glass window
- Replace optical pad with 0.1 mm thick glue
- Refractive index of glue similar to that of the SiPM (can change things by ~5%)
- 3.5 optical photons / keV
- Total cross talk ~0.4% (note that we will have some cross talk due to wrapping)



## **Optimization design**

- Removing top truncation (would simplify design a bit), increases position dependency (~10%)
- Also reduces light yield by 5%
- Main improvement can be made by changing the truncation size, maximize contact area with SiPM
- Discussions with Franck  $\rightarrow$  minimum we can do is 0.4 mm
- Improves light yield to 4.4 opt. photons / keV  $\rightarrow$  gives us 2 p.e. / keV (aim is threshold of ~4 p.e.) - Less light loss since we remove one layer
- Cross talk of 0.2%



### **POLAR-2** position dependency

| - Less truncation means more position dependence                                                                                                                                                              | Constant<br>Mean<br>Sigma | $\begin{array}{c} 73.36 \pm 3.11 \\ 4.214 \pm 0.016 \\ 0.4769 \pm 0.0125 \end{array}$ | Top<br>(7cm)      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------|-------------------|
| <ul> <li>Now around 4.5% between top and bottom</li> <li>This can be put into the response as long as we perform very detailed measurements of this effect (can be done with sources quite easily)</li> </ul> | Constant<br>Mean<br>Sigma | $75.94 \pm 3.10$<br>$4.373 \pm 0.016$<br>$0.4606 \pm 0.0108$                          | Middle<br>(0 cm)  |
|                                                                                                                                                                                                               | Constant<br>Mean<br>Sigma | $\begin{array}{c} 69.61 \pm 2.90 \\ 4.418 \pm 0.017 \\ 0.4851 \pm 0.0120 \end{array}$ | Bottom<br>(-7 cm) |

## Conclusions

- Next step is optimizing the length for signal to noise
- Requires full POLAR-2 simulations
- Will use typical GRB for signal (check for different angles)
- Will use standard bg spectra as input for background (detailed background model is not available and will take months to do this)
- Most likely we will not gain much from this exercise (order of  $\sim$ %)
- Will send proposal for grid design to Franck so he can check for production
- After fixing the length we can ask for new quotes from manufacturers