Forward Multiparticle Spectrometer at LHC

Talk is CMS-focused – but ATLAS & CMS have similar real estate here

Mike Albrow (Fermilab)

NEW PHYSICS AT THE LHC - introduction

Are we looking in the wrong direction? Let's look FORWARD to it!

A new subsystem for CMS Run 4 (HL-LHC) 80– 125m downstream of IR-5 **Forward Multiparticle Spectrometer for LHC**

A new subsystem for CMS Run 4 (HL-LHC) 80– 125m downstream of IR-5

Two operational modes:

A) Charged and neutral TeV hadron production spectra
 in p + p, p + O, O + O low pileup short runs.
 Read out with full CMS detectors
 35 Tm spectrometer magnet D1 (will be) already there!

B) Search for new light long-lived decaying neutralsin p + p at high luminosity (LLPs or WILPs)Independent trigger & read out

EXO – LLP 03.27 BSM discovery potential

Steel absorber and 35 Tm sweeping magnet D1 (will be) already there!

15/04/2020

Two half-day meetings on Forward Multiparticle Spectrometer April 16+17 2020

Purpose: present and discuss ideas. Critique and distinguish possible and not possible Plan next level of studies and especially who will contribute to a write-up / note /doc

===

Thursday 16th: Mainly search for penetrating but decaying LLPs - $\gamma c\tau \sim 10 \text{ m} \rightarrow \gamma c\tau \text{ few km}$

14:30		Introduction to mode B - LLP search at HL	Michael Albrow	
		CERN	14:30 - 15:00	
CERN times	15:00	LHC machine conditions	Francesco Cerutti CERN	
		CERN	15:00 - 15:30	
		Iron toroidal magnets, front absorber and back calorimeter	Vladimir Kashikhin	
		CERN	FNAL 15:30 - 15:45	
		FASER	Felix Kling et al. 🥝	<u>o</u>
	16:00	CERN	15:45 - 16:10	Competition
		Proton Fixed-Target Experiments for LLP Searches	Yu-Dai Tsai	dwa
		CERN	16:10 - 16:35	ວິ
		Detectors for CMS at HL	Julie Hogan	
	17:00	CERN	16:35 - 17:00	
		Introduction to dark portals (theory)	Gordan Krnjiac	ਸ਼ੂ
		CERN	17:00 - 17:30	- oretic
		Sensitivity to new penetrating LLP's	Speaker To be determined	Theoretical
		CERN	17:30 - 18:00	

18:00

Friday 17th: Mainly measurement of very forward hadrons in pp, pO, OO at low luminosity

14:30	Beam pipe issues Considerations of a long, large diameter beam pipe CERN	<i>Vincent Baglin</i> CERN 14:30 - 15:00
15:00	Introduction to Mode A: Hadron spectra High x _F low-p _T region – uncharted territory since ISR. Including charm and antir CERN	Michael Albrow nuclei 15:00 - 15:30
	Particle spectra, acceptances Tracking through Q1-Q3 and D1 magnets – through big pipe to detectors CERN	Marta Sabate Gilarte CERN 15:30 - 16:00
16:00	Transition Radiation Detectors for hadron ID How to identify multi-TeV π / K / p ? Not Cherenkov, TRD! CERN	<i>Michael Cherry et al.</i> 16:00 - 16:30
	Cosmic ray showers & Forward hadrons Why astroparticle physics needs these measurements CERN	Dr Tanguy Pierog 16:30 - 17:00
17:00	Way forward, plansCERNHow to make it real? Work (workers) needed to make a NOTE or LOI or sin	Mike Albrow, all nilar. 17:00 - 17:20
	Next LHC forward physics meetings CL CERN CL	hristophe Royon et al. 17:20 - 17:30

Beyond Standard Model Physics at LHC

Searches at high p_T – shortest distances & highest masses Major effort – so far no discoveries since Higgs(125) – Standard Model

We know there must be new physics : dark matter at least, maybe portals to "dark side"

"Look elsewhere!"

Maybe new BSM particles are light (< few GeV) but weakly interacting (LLPs, WILPs) Most produced light particles have low p_T and large p_z : go along the beam pipes.

++ Search at high luminosity for new particles e.g. dark photons, ALPs ("mode B") Mostly penetrating ~ 40m steel before entering ~ 35m decay volume – Vacuum! FASER (Felix Kling's talk) - similar goals but many differences. FMS closer, bigger, larger θ Fixed Target expts (Yu-Dai Tsai's talk) similar goals but much lower \sqrt{s} – mass range

HL – LLP Decaying in vacuum search mode

Big pipe radius R = 30 cm

Potentially* search for highly penetrating X⁰ decaying in vacuum to:

 $\gamma\gamma$ (no tracks - or conversion - to high granularity EM calorimeter)

 e^+e^- if M(X) > 2 MeV (track pair and high granularity EM calorimeter)

 $e^{\pm}\mu^{\mp}$ if M(X) > 108 MeV (Muon through calo & muon chambers) <u>not from $\tau^{+}\tau^{-}$ </u>

 $\mu^+\mu^-$ if M(X) > 212 MeV (Muon pair through calo & muon chambers)

 $\tau^{+}\tau^{-}$ if M(X) > 3600 MeV (e⁺e⁻ or $\mu^{+}\mu^{-}$ or e[±] μ^{+} or e/ μ + hhh ?)

 \overline{CC} if M(X) > ~ 4000 MeV (== e⁺e⁻ charm factory event boosted to TeV!)

OR?? Not decaying but interacting in calorimeter (very good imaging!) ??

* All need proper study with simulation & realistic set-up and backgrounds. INVITATION!

Production spectra of charged mesons at pp 13TeV

H.Menjo

(Dec 5th 2019)

pp collisions with $\sqrt{s} = 13 \text{ TeV}$

Event generation by CRMC for Pythia8, QGJSET2-4, EPOS-LHC, Sibyll 2.3c

10^7 collisions for each interaction model

EPOS-LHC

Note: $\eta = 4.5$ (LHCb charm) is not "very forward"

Forward Multiparticle Mike Albrow Spectrometer

Light LLPs from π , η

 η = 7 is 1.8 mrad

Pipe region as currently planned for Run 4 TOP VIEW

New superconducting Dipole 35 Tm

80m

Propose: new pipe with radius ~ 30 cm, length ~ 30 m

Vincent Baglin's talk tomorrow

NEGATIVE particles 1 – 2 TeV (through D1 aperture)

Marta Sabate Gilarte's talk tomorrow

POSITIVE particles 1 - 2 TeV (through D1 aperture)

HADRON spectroscopy in L&R quadrants in low pile-up short runs (Mode A) LLP search in U&D quadrants in full HL Runs (Mode B)

Hodoscope and short tracker mounted on back, in front of decay volume

Same techniques as CMS-HL-LHC Forward detectors Only small overall dimensions – 0.25m², shapes Julie Hogan's talk

```
At back of big pipe, over R ~ 10 cm - 30 cm:

Detectors over 10 - 12 m in front of TAXN at 127 m:

Thin vacuum window (minimise mult.scatt. over most of area)

Precision tracking (pixels and/or strips) over ~ 2 m (\theta_x and \theta_y to few µrad)

Timing (~ 20 ps) to constrain track pairs (e.g. LGAD)

High granularity EM calorimeter (e<sup>+</sup>e<sup>-</sup> and \gamma \gamma)

Imaging hadron calorimeter: hadron E measurment and muon filter

== Fe toroid magnet full \phi

Muon tracking behind calorimeter (e.g. GEMs)

== TAXN behind (shields the back)
```

Transition Radiation Detectors only needed for Low PU spectra for Mode A (hadrons) Not really essential (?) for HL LLP search – if assume $h = \pi$

At high P-U separate trigger and data stream – no need to combine with central (Only in low – PU mode SMP-HAD)

Tracking

Precision tracking immediately behind vacuum pipe window – as thin as allowed (ribs) No field so straight tracks. Optimize vertexing – $x_0 y_0 z_0$ to be well inside vacuum ...and pointing

CALORIMETER

FH.	FMS
Imaging: reado	ut with Si pads/cells ~ 1 cm ²
R _{inn} ~ 40 cm.	Cf FHS 10 cm
R _{out} ~ 180 cm.	Cf. FHS 30 cm
Angled	Not angled
Area ~ 10 m².	ⁱ Area ~ 0.25 m ²

TO DO: Layout a detector combination with Run 4 detectors as default and simulate.

M(X \rightarrow µ+ µ-) in vacuum past D1 p(µ) from bend (dE/dx check)

IRON Plate thickness = 12×35 mm – (12-24) x 68mm Field in Fe ~ 2T (saturation) at small R Not uniform – decreases with R

TODO: Calculate bending with multiple scattering vs p(μ) over full range \rightarrow M(μ + μ -) resolution

Vladimir Kashikhin's talk

Total signal of μ -track through Calo

Several possible μ -tracking technologies 0.25 m² x N (~4?) layers

Alexei Safonov : GEMs suitable, and almost "off-the-shelf" now.

Note: shielded by TAXN at back

Mike Albrow Forward Multiparticle Spectrometer

Calorimeter and tracking all azimuth also L&R for charged hadrons : $\sigma(E)/E \sim 5\%$

Question: Why full azimuth for LLI Search?

Answers:

- Full azimuth needed for toroid magnet
- Perhaps search can be full φ even with charged particle background? Track multiplicity question.
- The low-PU Mode A is a strong SM motivation, and spectra are needed to understand expected fluxes, etc. That needs L & R sectors.

But can discuss value of TRD in the UP & DOWN sectors.

- TRD can incorporate excellent tracking.
- GaAs more rad hard than Si

Mike Cherry's talk

arXiv:1811.10243v1

FASER FORWARD SEARCH EXPERIMENT AT THE LHC

Felix Kling's talk

FASER: Lol July 2018 – quickly approved – Run 3 Decay volume at z = 480 m, R = 10 cm, and L = 1.5m vFaser proposed (emulsion stacks) Run 4 they propose FASER2 : R = 1m and L = 5m

Muons and v from π , K, D decay can be known (FMS- hadrons), and their decay lengths are very long!

```
γct (π) = 139 km at 2.5 TeV ! But abundant and - > forward HE neutrinos! (FASERv)
γct (K+) = 18.5 km at 2.5 TeV !
γct (D<sup>0</sup>) = 16.5 cm at 2.5 TeV !
```

<u>Fraction of particles entering decay volume that decay vs. $\gamma c\tau$ </u>

F = Fraction decaying in length of decay volume in angular acceptance.

F

(Does not include flux factor)

FASER (Run 3/4) is a short decay volume far away : maximum decay fraction = 0.4% (1.2%) FMS (Run 4) is much bigger volume closer: maximum decay fraction 13%

Mike Albrow Forward Multiparticle Spectrometer

<u>Can we see $X^0 \rightarrow \gamma + \gamma$?</u> Axion-like particles

As for π^0 decay, the opening angle $\theta_{\gamma\gamma}$ (or α) has a minimum $\theta_{\gamma\gamma}$ (min) = 2 M_x/E_x and a maximum opening angle 180°. For an isotropic decay the distribution in α is: $\frac{dN}{d\alpha} = \frac{1}{4\gamma\beta} \frac{\cos \alpha/2}{\sin^2 \alpha/2} \frac{1}{\sqrt{\gamma^2 \sin^2 \alpha/2 - 1}}.$

... which peaks at $\theta_{\gamma\gamma}$ (min) - equal energy photons - and vanishes at 180° (one is backwards)

Average Energy density a.u.

Can we see $X^0 \rightarrow \gamma + \gamma$?

From CMS-TDR-019

Can we see $X^0 \rightarrow \tau + \tau$?

Can we see
$$X^0 \rightarrow c + c$$
?

Consider e+e- events above open charm threshold $2 \times M(D^0) = 3730 \text{ MeV}$ Boosted to high p_z (acceptance?) and decay in pipe

All need simulation

<u>Can we see $X^0 \rightarrow$ Jet + Jet?</u>

CMS Central

Require di-jets all coming from a single displaced vertex.

Throw away energy of tracks not reconstructed from vertex.

Unlikely to be sensitive to emerging phenomenology.

Spectrometer

SUMMARY: Propose Forward Multiparticle Spectrometer for CMS Run 4

Low PU charged mode : many valuable measurements in unexplored region High Lumi neutral mode: important discovery potential

Many opportunities to participate towards a CMS Note or other documents (theory paper too)

Simulate beam line, magnets as absorbers etc.

Assemble a possible configuration of Run 4 detectors as spectrometer elements

Simulate vertexing (x, y, z) from track pairs (or 4?) in tracker, resolutions

Calculate hadron (including c) production spectra in this region with PYTHIA et al. –other MCs

Simulate sensitivity to LLIs as fn (M, ϵ^2 / τ , σ) ... including $\tau^+ \tau^-$, c-cbar? (LHC > SPS-FT)

Opportunity for participation and also leadership!

Thursday 16th: Mainly search for penetrating but decaying LLPs - $\gamma c\tau \sim 10 \text{ m} \rightarrow \gamma c\tau \sim \text{few km}$

14:30				
11.50		Introduction to mode B - LLP search at HL	Michael Albrow	
CERN times	15:00	CERN	14:30 - 15:00	
		LHC machine conditions	Francesco Cerutti CERN	
		CERN	15:00 - 15:30	
		Iron toroidal magnets, front absorber and back calorimeter	Vladimir Kashikhin FNAL	
		CERN	15:30 - 15:45	
		FASER	Felix Kling et al. 🧭	<u>o</u>
	16:00	CERN	15:45 - 16:10	etit
		Proton Fixed-Target Experiments for LLP Searches	Yu-Dai Tsai	Competition
		CERN	16:10 - 16:35	ى ا
		Detectors for CMS at HL	Julie Hogan	
		CERN	16:35 - 17:00	
	17:00	Introduction to dark portals (theory)	Gordan Krnjiac	a [
		CERN	17:00 - 17:30	- Ireti
		Sensitivity to new penetrating LLP's	Speaker To be determined	Theoretical
		CERN	17:30 - 18:00	-

18:00

From IR5 to first quadrupole Q1

Figure 11.9: Layout of CMS beam-pipe from interaction point to first quadrupole. All dimensions are in millimeters.

Francesco Cerutti & Marta Gilarte. FLUKA 100 fb⁻¹ Does not include additional Fe absorbers

Fluence cm^{-2} per 100 fb⁻¹ down to low energies (100 keV - 1 MeV) – all momenta Calculations by Marta Gilarte, CERN (FLUKA) At z = 116m where transition to small pipe could be.

Very low levels above and below 'small' beam pipe

WITHOUT EXTRA ~3m Fe "PLUG" Or n-absorber

A Light Scalar Explanation of $(g-2)_{\mu}$ and the KOTO Anomaly

High Energy Physics Division, Argonne National Laboratory, Argonne, IL, 60439

propopp propopp propopp propopp propopp propopp propopp propopping propping propopping propop The KOTO experiment has recently performed a search for neutral Kaons decaying into neutral pions and a pair of neutrinos. Three events were observed in the KOTO signal region, with an expected background of about 0.05. Since no clear signal of systematic errors have been found, the excess of events in the decay $K_L \to \pi^0 \nu \bar{\nu}$ is quite intriguing. One possibility to explain this anomaly would be the presence of a scalar ϕ with mass of the order of the pion mass and inducing decays $K_L \to \pi^0 \phi$ which mimic the observed signal. A scalar with mass of the order of the pion mass and a coupling to muons of the order of the Standard Model Higgs coupling could also explain

Consider "dark photons" – popular candidate, not for dark matter if they decay but maybe "portals" to the dark sector.

If 1 Mev < M(A') < 140 MeV then $\pi^0 \rightarrow A' + \gamma$ and then $A' \rightarrow e+e-$ If 1 Mev < M(A') < 547 MeV then $\eta^0 \rightarrow A' + \gamma$ and then $A' \rightarrow e+e-$ If 210 Mev < M(A') < 547 (958) MeV then $\eta^0(\eta') \rightarrow A' + \gamma$ and then $A' \rightarrow e+e- \& \mu + \mu$ -Look where the π^0 and η^0 (η') go ...

15/04/2020

K ⁰ _L too long lived for FMS
$\gamma c \tau$ (1 TeV) = 30 km but
$K^0_{S} \rightarrow \pi^+ \pi^- \phi$ is allowed (Carlos Wagner)
γcτ(1 TeV) = 53 m & φ → e⁺e⁻
Lifetime in reasonable range

Key is **extremely good tracking** (behind thin window) to find **vertex in vacuum** (consider He or air but ... pipe exists – make it bigger) pointing back to collision region through ~ 30m of steel.

If almost no background events (?) a few makes a discovery [cf Z (6 events)] What backgrounds make a pointing-back vertex in this large fiducial volume?

Food for thought (& simulation) - enhanced coupling to heavy flavors:

 $X \rightarrow \tau + \tau - \rightarrow 3\% e + \mu$, ~5% (e or μ)+ 3-tracks - but missing v's smears pointing

 $X \rightarrow c-\overline{c}, b-\overline{b}?$

SM Particles decaying to $\mu^+\mu^-$

Name	IGJPC	M(MeV)	Width MeV	BR-mumu	
rho(770)	1+1	775.26 +- 0.25	149.1 +/- 0.8	4.55 +- 0.28	10^-5
omega(782)	0-1	782.65 +- 0.12	8.49 +- 0.08	7.4 +- 1.8	10^-5
phi(1020)	0-1	1019.461 +- 0.016	4.249 +- 0.013	2.86 +- 0.19	10^-4
J/psi(1S)	0-1	3096.900 +- 0.006	0.0929 +- 0.0028	5.961+-0033	10^-2
psi(2S)	0-1	3686.097 +- 0.025	0.294 +- 0.008	8.0 +- 0.6	10^-3
psi(4160)	0-1	4191 +- 5	70 +- 10	seen	
Upsilon(1S)	0-1	9460.30 +- 0.26	0.05402 +- 0.00125	2.48 +- 0.05	10^-2
Upsilon(2S)	0-1	10023.26 +- 0.31	0.03198 +- 0.00263	1.93 +- 0.17	10^-2
Upsilon(3S)	0-1	10355.2 +- 0.5	0.02032 +- 0.00185	2.18 +- 0.21	10^-2
ко_s		497.611		< 8	10^-10
K0_L		497.611		6.84 +- 0.11	10^-9

