Forward Multiparticle Spectrometer at LHC

Talk is CMS-focused - but ATLAS \& CMS have similar real estate here

Mike Albrow (Fermilab)

NEW PHYSICS AT THE LHC - introduction

Are we looking in the wrong direction? Let's look FORWARD to it!

A new subsystem for CMS Run 4 (HL-LHC) 80-125m downstream of IR-5

Forward Multiparticle Spectrometer for LHC

A new subsystem for CMS Run 4 (HL-LHC) 80-125m downstream of IR-5

Two operational modes: BUY ONE, GET ONE FREE!
A) Charged and neutral TeV hadron production spectra in $p+p, p+O, O+O$ low pileup short runs. Read out with full CMS detectors 35 Tm spectrometer magnet D1 (will be) already there!
B) Search for new light long-lived decaying neutrals in $p+p$ at high luminosity (LLPs or WILPs) Independent trigger \& read out

```
SMP-HAD 03.20
```

Guaranteed physics in
unexpored phase space

Steel absorber and 35 Tm sweeping magnet D1 (will be) already there!

Two half-day meetings on Forward Multiparticle Spectrometer April 16+17 2020 Purpose: present and discuss ideas. Critique and distinguish possible and not possible Plan next level of studies and especially who will contribute to a write-up / note /doc

Thursday 16th: Mainly search for penetrating but decaying LLPs - $\gamma \mathbf{c} \tau \sim 10 \mathrm{~m} \rightarrow>^{\sim}$ few km

Friday 17th: Mainly measurement of very forward hadrons in pp, pO, OO at low luminosity

Beyond Standard Model Physics at LHC

Searches at high $\mathrm{p}_{\mathrm{T}}-$ shortest distances \& highest masses
Major effort - so far no discoveries since Higgs(125) - Standard Model
We know there must be new physics : dark matter at least, maybe portals to "dark side"
"Look elsewhere!"
Maybe new BSM particles are light (< few GeV) but weakly interacting (LLPs, WILPs) Most produced light particles have low p_{T} and large p_{z} : go along the beam pipes.
++ Search at high luminosity for new particles e.g. dark photons, ALPs ("mode B") Mostly penetrating ~ 40m steel before entering ~ 35m decay volume - Vacuum! FASER (Felix Kling's talk) - similar goals but many differences. FMS closer, bigger, larger θ Fixed Target expts (Yu-Dai Tsai's talk) similar goals but much lower Vs - mass range

Big pipe radius $\mathrm{R}=\mathbf{3 0} \mathbf{c m}$

HL - LLP Decaying in vacuum search mode

Potentially* search for highly penetrating X^{0} decaying in vacuum to:
$\gamma \gamma$ (no tracks - or conversion - to high granularity EM calorimeter)
$e^{+} e^{-}$if $M(X)>2 M e V \quad$ (track pair and high granularity EM calorimeter)
$\mathrm{e}^{ \pm} \mu^{\mp}$ if $\mathrm{M}(\mathrm{X})>108 \mathrm{MeV}$ (Muon through calo \& muon chambers) not from $\tau^{+} \tau^{-}$
$\mu^{+} \mu^{-}$if $M(X)>212 \mathrm{MeV}$ (Muon pair through calo \& muon chambers)
$\tau^{+} \tau^{-}$if $M(X)>3600 \mathrm{MeV}\left(\mathrm{e}^{+} \mathrm{e}^{-}\right.$or $\mu^{+} \mu^{-}$or $\mathrm{e}^{ \pm} \mu^{\mp}$ or e/ $\mu+$ hhh ? $)$
$\overline{C \bar{C}}$ if $\mathrm{M}(\mathrm{X})>\sim 4000 \mathrm{MeV}$ (== $\mathrm{e}^{+} \mathrm{e}^{-}$charm factory event boosted to TeV !)

OR?? Not decaying but interacting in calorimeter (very good imaging!) ??

* All need proper study with simulation \& realistic set-up and backgrounds. INVITATION!

Production spectra of
charged mesons at pp 13TeV
H.Menjo

- pp collisions with $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$
- Event generation by CRMC for Pythia8, QGJSET2-4, EPOS-LHC, Sibyll 2.3c
- $10^{\wedge} 7$ collisions for each interaction model
(Dec 5th 2019)

EPOS-LHC

Density of charged pions in $\mathrm{p}_{\mathrm{T}}, \mathrm{x}_{\mathrm{F}}$. Most have $\mathrm{p}_{\mathrm{T}}<1 \mathrm{GeV} / \mathrm{c} \&|\eta|>7$ - no measurements at LHC yet

Light LLPs from π, η decay go where pions go $\eta=7$ is 1.8 mrad

Note: $\eta=4.5$ (LHCb charm) is not "very forward"

RUN 4 - HL LHC

Recombination dipole D2 105 mm diameter bore
OD ~ 56 cm

Fig. 4.1: Cross-section of the separation dipole.
Separation dipole D1
150 mm aperture,
Thanks G. Apollinari
35 Tm integrated field OD ~ 40 cm

Pipe region as currently planned for Run 4 TOP VIEW
New superconducting
Dipole 35 Tm

80m

Propose: new pipe with radius $\sim 30 \mathrm{~cm}$, length $\sim 30 \mathrm{~m}$

Vincent Baglin's talk tomorrow

Marta Sabate Gilarte's talk tomorrow

NEGATIVE particles $1-2$ TeV (through D1 aperture)

POSITIVE particles 1-2 TeV (through D1 aperture)

HADRON spectroscopy in L\&R quadrants
in low pile-up short runs (Mode A)
LLP search in U\&D quadrants in full HL Runs (Mode B)

Magnetised Fe Toroids around "small" beam pipe

At front as absorber, at back plates as calorimeter

Vladimir Kashikhin's talk

Fe cylinder (E.g. AISI 1010 ~0.1\%C)

```
COIL: Water-cooled Cu
```

COIL: Water-cooled Cu
Field in Fe B ~ 2T at inner radius
Field in Fe B ~ 2T at inner radius
~ 1T at outer radius
~ 1T at outer radius
Field on beams small
Thanks to Vladimir Kashikhin
100 GeV Muons bend in 3 m @ $2 \mathrm{~T}=18 \mathrm{mrad}$

``` \& Mult. Scatt. \(\theta_{\text {RMs }} \sim 2 \mathrm{mrad}\)
\(R_{\text {inner }} \sim 10 \mathrm{~cm} . R_{\text {outer }} \sim 30 \mathrm{~cm} \rightarrow\) Area \(0.25 \mathrm{~m}^{2}\)
Length ~ \(3 m=\sim 18 \lambda_{\text {INT }}\)
Top and bottom halves separate.
(Each half weighs ~ 3T if L = 3m)

Behind separation dipole D1 and Diode BACK CYLINDER @ z ~ 120m = Calorimeter Plates separated with detector layers

Hodoscope and short tracker mounted on back, in front of decay volume

\section*{Same techniques as CMS-HL-LHC Forward detectors Only small overall dimensions \(-0.25 \mathrm{~m}^{2}\), shapes Julie Hogan's talk}

At back of big pipe, over \(\mathrm{R} \sim 10 \mathrm{~cm}-30 \mathrm{~cm}\) :
Detectors over 10-12 m in front of TAXN at 127 m :
Thin vacuum window (minimise mult.scatt. over most of area)
Precision tracking (pixels and/or strips) over \(\sim 2 \mathrm{~m}\left(\theta_{\mathrm{x}}\right.\) and \(\theta_{\mathrm{y}}\) to few \(\left.\mu \mathrm{rad}\right)\)
Timing ( \(\sim 20 \mathrm{ps}\) ) to constrain track pairs (e.g. LGAD)
High granularity EM calorimeter ( \(\mathrm{e}^{+} \mathrm{e}^{-}\)and \(\gamma \gamma\) )
Imaging hadron calorimeter: hadron E measurment and muon filter
\(==\) Fe toroid magnet full \(\varphi\)
Muon tracking behind calorimeter (e.g. GEMs)
== TAXN behind (shields the back)
Transition Radiation Detectors only needed for Low PU spectra for Mode A (hadrons) Not really essential (?) for HL LLP search - if assume \(h=\pi\)

At high P-U separate trigger and data stream - no need to combine with central (Only in low - PU mode SMP-HAD)

\section*{Tracking}

Precision tracking immediately behind vacuum pipe window - as thin as allowed (ribs) No field so straight tracks. Optimize vertexing - \(x_{0} y_{0} z_{0}\) to be well inside vacuum ...and pointing


\section*{CALORIMETER}
\begin{tabular}{|ll|}
\hline \multicolumn{1}{c|}{ FH. } & \multicolumn{1}{c|}{ FMS } \\
Imaging: readout with Si pads/cells \(\sim 1 \mathrm{~cm}^{2}\) \\
\(\mathrm{R}_{\text {inn }} \sim 40 \mathrm{~cm}\). & Cf FHS 10 cm \\
\(\mathrm{R}_{\text {out }} \sim 180 \mathrm{~cm}\). & Cf. FHS 30 cm \\
Angled & Not angled \\
Area \(\sim 10 \mathrm{~m}^{2}\). & \({ }^{i}\) Area \(\sim 0.25 \mathrm{~m}^{2}\)
\end{tabular}

TO DO: Layout a detector combination with Run 4 detectors as default and simulate.
\(M(X \rightarrow \mu+\mu-)\) in vacuum past \(D 1\) \(p(\mu)\) from bend ( \(\mathrm{dE} / \mathrm{dx}\) check)

\section*{Magnetised hadron calorimeter} toroid concept - as HGCAL + coil


IRON Plate thickness \(=12 \times 35 \mathrm{~mm}-(12-24) \times 68 \mathrm{~mm}\)
Field in \(\mathrm{Fe} \sim 2 T\) (saturation) at small \(R\)
Not uniform - decreases with \(R\)
TODO: Calculate bending with multiple scattering vs \(p(\mu)\) over full range \(\rightarrow \mathrm{M}(\mu+\mu-)\) resolution

\section*{Vladimir Kashikhin's talk}

Calorimeter and tracking all azimuth also L\&R for charged hadrons : \(\sigma(\mathrm{E}) / \mathrm{E} \sim 5 \%\)

\section*{Question: Why full azimuth for LLI Search?}

Answers:
\(>\) Full azimuth needed for toroid magnet
\(>\) Perhaps search can be full \(\phi\) even with charged particle background? Track multiplicity question.
> The low-PU Mode A is a strong SM motivation, and spectra are needed to understand expected fluxes, etc.
That needs L \& R sectors.
But can discuss value of TRD in the UP \& DOWN sectors.
- TRD can incorporate excellent tracking.
- GaAs more rad hard than Si

\section*{Coverage through steel absorbers}

Approximation: Zero crossing angle
\[
R=30 \mathrm{~cm} @ 116 \mathrm{~m}, \eta=6.65
\]


FASER
FORWARD SEARCH EXPERIMENT AT THE LHC
arXiv:1811.10243v1
Felix Kling's talk


FASER: Lol July 2018 - quickly approved - Run 3
Decay volume at \(\mathrm{z}=480 \mathrm{~m}, \mathrm{R}=10 \mathrm{~cm}\), and \(\mathrm{L}=1.5 \mathrm{~m}\)
vFaser proposed (emulsion stacks)
Run 4 they propose FASER2 : \(R=1 \mathrm{~m}\) and \(\mathrm{L}=5 \mathrm{~m}\)
Muons and \(v\) from \(\pi, K, D\) decay can be known (FMS- hadrons), and their decay lengths are very long!
\(\gamma c \tau(\pi)=139 \mathrm{~km}\) at 2.5 TeV ! But abundant and \(->\) forward HE neutrinos! (FASERv)
үст \((\mathrm{K}+)=18.5 \mathrm{~km}\) at 2.5 TeV !
үсt \(\left(\mathrm{D}^{0}\right)=16.5 \mathrm{~cm}\) at 2.5 TeV !

Fraction of particles entering decay volume that decay vs. \(\gamma c \tau\)

F = Fraction decaying in length of decay volume in angular acceptance.
(Does not include flux factor)


FASER (Run 3/4) is a short decay volume far away : maximum decay fraction \(=0.4 \%(1.2 \%)\) FMS (Run 4) is much bigger volume closer: maximum decay fraction \(13 \%\)

\section*{Can we see \(\mathrm{X}^{0} \rightarrow \gamma+\gamma\) ? Axion-like particles}

As for \(\pi^{0}\) decay, the opening angle \(\theta_{\gamma \gamma}(\) or \(\alpha)\) has a minimum \(\theta_{\gamma \gamma}(\min )=2 \mathrm{M}_{\mathrm{x}} / \mathrm{E}_{\mathrm{x}}\) and a maximum opening angle \(180^{\circ}\).
For an isotropic decay the distribution in \(\alpha\) is:
\[
\frac{d N}{d \alpha}=\frac{1}{4 \gamma \beta} \frac{\cos \alpha / 2}{\sin ^{2} \alpha / 2} \frac{1}{\sqrt{\gamma^{2} \sin ^{2} \alpha / 2-1}} .
\]
... which peaks at \(\theta_{\gamma \gamma}\) (min) - equal energy photons - and vanishes at \(180^{\circ}\) (one is backwards)


With 2-EM shower resolving d few mm and distances L ~ \(3-30 \mathrm{~m}\) looks OK, including mass \(\mathrm{M}_{\mathrm{x}}\) reconstruction.

\section*{Critical issue probably shower pointing} vertex resolution and \(\mathrm{X}^{0}\) trajectory.

Simulation two 80 GeV parallel photons separated by about 30 mm .
From CMS-TDR-019 Fig 5.1

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Some values, e.g.:} \\
\hline \(\mathrm{M}_{\mathrm{x}}(\mathrm{GeV})\) & \(\mathrm{E}_{\chi}(\mathrm{GeV})\) & & ) mrad \\
\hline 2 & 1000 & 4 & \(=\mathrm{mm} / \mathrm{m}\) \\
\hline 2 & 2000 & 2 & \\
\hline 5 & 1000. & 10 & \\
\hline 5 & 2000 & 5 & \\
\hline 10 & 1000 & 20 & \\
\hline 10 & 2000 & 10 & \\
\hline
\end{tabular}
\[
\text { Can we see } X^{0} \rightarrow \gamma+\gamma ?
\]

Critical issue probably shower pointing: vertex resolution, \(\mathrm{X}^{0}\) trajectory and \(\alpha\) Single shower position resolution \(\sim 1 \mathrm{~mm}\) Angle resolution \(<7 \mathrm{mrad}\) ( 25 GeV showers)


From CMS-TDR-019 Fig 5.2



Simulation two 80 GeV parallel photons separated by about 30 mm .
From CMS-TDR-019 Fig 5.1

If conversion in tracker - no field so no spread

\section*{Can we see \(\mathrm{X}^{0} \rightarrow \tau+\tau ?\)}
\(\mathrm{M}(\tau)=1776.86 \mathrm{MeV} \rightarrow \mathrm{M}(\mathrm{X})>\sim 3600 \mathrm{MeV}\)
Main decays: \(\mu \vee v\) \& evveach about 0.175 so \(\mu \mu\), e e \(3 \%\) each, e \(\mu=6 \%\)
Non-pointing because neutrinos missing.
\(B R(h v)=0.115\) (mostly \(\pi\) ).
BR ( \(h+\geq 1\) neutrals) \(37 \%\)
BR (h h h \(+\geq 0\) neutrals - 3 prong) \(15 \%\)


\section*{Can we see \(\mathrm{X}^{0} \rightarrow \mathrm{c}+\mathrm{c}\) ?}

Consider e+e- events above open charm threshold \(2 \times \mathrm{M}\left(\mathrm{D}^{0}\right)=3730 \mathrm{MeV}\) Boosted to high \(\mathrm{p}_{\mathrm{z}}\) (acceptance?) and decay in pipe

\section*{All need simulation}

\section*{Can we see \(\mathrm{X}^{0} \rightarrow\) Jet + Jet?}


CMS Central
CMS Collaboration, Phys.Rev.D.91, 012017 (2015) [arXiv:1411.6530].


Require di-jets all coming from a single displaced vertex.

Throw away energy of tracks not reconstructed from vertex.

Unlikely to be sensitive to emerging phenomenology.



\section*{SUMMARY: Propose Forward Multiparticle Spectrometer for CMS Run 4}

> Low PU charged mode : many valuable measurements in unexplored region High Lumi neutral mode: important discovery potential

Many opportunities to participate towards a CMS Note or other documents (theory paper too)
Simulate beam line, magnets as absorbers etc.

Assemble a possible configuration of Run 4 detectors as spectrometer elements

Simulate vertexing ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) ) from track pairs (or 4?) in tracker, resolutions
Calculate hadron (including c) production spectra in this region with PYTHIA et al. -other MCs

Simulate sensitivity to LLIs as \(\mathrm{fn}\left(\mathrm{M}, \varepsilon^{2} / \tau, \sigma\right) \ldots\) including \(\tau^{+} \tau^{-}\), c-cbar? (LHC >SPS-FT)
Opportunity for participation and also leadership!

\title{
Thank pou
}

\section*{Back-ups \(\rightarrow\)}

\section*{Thursday 16th: Mainly search for penetrating but decaying LLPs - \(\gamma \mathbf{c} \tau \sim 10 \mathrm{~m} \rightarrow>^{\sim}\) few km}


\section*{From IR5 to first quadrupole Q1}


Figure 11.9: Layout of CMS beam-pipe from interaction point to first quadrupole. All dimensions are in millimeters.


Francesco Cerutti \& Marta Gilarte. FLUKA
\(100 \mathrm{fb}^{-1}\) Does not include additional Fe absorbers

Fluence \(\mathrm{cm}^{-2}\) per \(100 \mathrm{fb}^{-1}\) down to low energies ( \(100 \mathrm{keV}-1 \mathrm{MeV}\) ) - all momenta Calculations by Marta Gilarte, CERN (FLUKA)
At \(\mathrm{z}=116 \mathrm{~m}\) where transition to small pipe could be.

CHARGED PARTICLES
115.9 m < distance from IP < 116.1 m


Very low levels above and below 'small' beam pipe

NEUTRAL PARTICLES


Or n-absorber

A Light Scalar Explanation of \((g-2)_{\mu}\) and the KOTO Anomaly

Jia Liu, \({ }^{1}\) Navin McGinnis, \({ }^{2,3}\) Carlos E.M. Wagner, \({ }^{1,3,4}\) and Xiao-Ping Wang \({ }^{3}\)
\({ }^{1}\) Physics Department and Enrico Fermi Institute, DUt :...
dark photysics Department, Indiana University, Bloomington, IN 47405, USA
\({ }^{3}\) High Energy Physics Division, Argonne National Laboratory, Argonne, IL, 60439
\[
\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0}+\phi
\]
\({ }^{4}\) Kavli Institute for Cosmological Physics,
University of Chicago, Chicago, IL, 60637
(Dated: January 22, 2020)
Abstract
The KOTO experiment has recently performed a search for neutral Kaons decaying into neutral pions and a pair of neutrinos. Three events were observed in the KOTO signal region, with an expected background of about 0.05 . Since no clear signal of systematic errors have been found, the excess of events in the decay \(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\) is quite intriguing. One possibility to explain this anomaly would be the presence of a scalar \(\phi\) with mass of the order of the pion mass and inducing decays \(K_{L} \rightarrow \pi^{0} \phi\) which mimic the observed signal. A scalar with mass of the order of the pion mass and a coupling to muons of the order of the Standard Model Higgs coupling could also explain
\(\mathrm{K}_{\mathrm{L}}^{0}\) too long lived for FMS \(\gamma \subset \tau(1 \mathrm{TeV})=30 \mathrm{~km}\) but \(\mathrm{K}_{\mathrm{S}}^{0} \rightarrow \pi^{+} \pi^{-} \phi\) is allowed (Carlos Wagner) \(\gamma c \tau(1 \mathrm{TeV})=53 \mathrm{~m} \& \phi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\) Lifetime in reasonable range

Consider "dark photons" - popular candidate, not for dark matter if they decay but maybe "portals" to the dark sector.

If \(1 \mathrm{Mev}<\mathrm{M}\left(\mathrm{A}^{\prime}\right)<140 \mathrm{MeV}\) then \(\pi^{0} \rightarrow \mathrm{~A}^{\prime}+\gamma\) and then \(\mathrm{A}^{\prime} \rightarrow\) e+eIf \(1 \mathrm{Mev}<\mathrm{M}\left(\mathrm{A}^{\prime}\right)<547 \mathrm{MeV}\) then \(\eta^{0} \rightarrow \mathrm{~A}^{\prime}+\gamma\) and then \(\mathrm{A}^{\prime} \rightarrow\) e+eIf \(210 \mathrm{Mev}<\mathrm{M}\left(\mathrm{A}^{\prime}\right)<547\) (958) MeV then \(\eta^{0}\left(\eta^{\prime}\right) \rightarrow A^{\prime}+\gamma\) and then \(A^{\prime} \rightarrow \mathrm{e}+\mathrm{e}-\& \mu+\mu-\) Look where the \(\pi^{0}\) and \(\eta^{0}\left(\eta^{\prime}\right)\) go ...

Key is extremely good tracking (behind thin window) to find vertex in vacuum (consider He or air but ... pipe exists - make it bigger) pointing back to collision region through ~30m of steel.

If almost no background events (?) a few makes a discovery [cf Z (6 events)] What backgrounds make a pointing-back vertex in this large fiducial volume?

Food for thought (\& simulation) - enhanced coupling to heavy flavors:
\(X \rightarrow \tau+\tau-\rightarrow 3 \% \mathrm{e}+\mu, \sim 5 \%(\mathrm{e}\) or \(\mu)+3\)-tracks - but missing v's smears pointing
\[
x \rightarrow c \bar{c}, b-\bar{b} ?
\]

SM Particles decaying to \(\mu^{+} \mu\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Name & IGJPC & \(\mathrm{M}(\mathrm{MeV})\) & Width MeV & BR-mumu & \\
\hline rho(770) & 1+1-- & \(775.26+-0.25\) & \(149.1+/-0.8\) & \(4.55+-0.28\) & \(10^{\wedge}-5\) \\
\hline omega(782) & \(0-1--\) & \(782.65+-0.12\) & \(8.49+-0.08\) & \(7.4+-1.8\) & \(10^{\wedge}-5\) \\
\hline phi(1020) & \(0-1--\) & \(1019.461+-0.016\) & \(4.249+-0.013\) & \(2.86+-0.19\) & \(10^{\wedge}-4\) \\
\hline J/psi(1S) & \(0-1--\) & \(3096.900+-0.006\) & \(0.0929+-0.0028\) & \(5.961+-0 . .033\) & \(10^{\wedge}-2\) \\
\hline psi(2S) & \(0-1--\) & \(3686.097+-0.025\) & \(0.294+-0.008\) & \(8.0+-0.6\) & \(10^{\wedge}-3\) \\
\hline psi(4160) & \(0-1--\) & \(4191+-5\) & \(70+-10\) & seen & \\
\hline Upsilon(1S) & \(0-1--\) & \(9460.30+-0.26\) & \(0.05402+-0.00125\) & \(2.48+-0.05\) & \(10^{\wedge}-2\) \\
\hline Upsilon(2S) & \(0-1--\) & \(10023.26+-0.31\) & \(0.03198+-0.00263\) & \(1.93+-0.17\) & \(10^{\wedge}-2\) \\
\hline Upsilon(3S) & \(0-1--\) & \(10355.2+-0.5\) & \(0.02032+-0.00185\) & \(2.18+-0.21\) & \(10^{\wedge}-2\) \\
\hline & & & & & \(10^{\wedge}-10\) \\
\hline KO_S & & 497.611 & & \(6.84+-0.11\) & \(10^{\wedge}-9\) \\
\hline KO_L & & 497.611 & & & \\
\hline & & & & & \\
\hline
\end{tabular}
```

