Fermilab (C) ENERGY OF Science

Dark Sectors & Portal Interactions Overview

Gordan Krnjaic

CERN Forward Spectrometer Meeting, April 16, 2020

Open Questions in Fundamental Physics & Cosmology

Also Quantum Gravity

How to look for new physics?

What have we learned on the "energy frontier"?

Selection of observed limits at 95% C.L. (theory uncertainties are not included). Probe **up to** the quoted mass limit for light LSPs unless stated otherwise. The quantities ΔM and x represent the absolute mass difference between the primary sparticle and the LSP, and the difference between the intermediate sparticle and the LSP relative to ΔM , respectively, unless indicated otherwise.

Null LHC results: no evidence yet of new SM charged particles

How to look for new physics?

BSM: Smaller coupling, lower mass, SM neutral

Overview

Part 1) Minimal Single Particle SM Extensions

Part 2) Add Light ~ GeV Dark Matter

Overview

Part 1) Minimal Single Particle SM Extensions

Part 2) Add Light ~ GeV Dark Matter

How to couple single neutral particle to the SM?

Option 1: New gauge force directly coupled to SM currer

$$\mathcal{L} \supset g V_{\mu} J^{\mu}_{\mathrm{SM}} \ , \ J^{\mu}_{\mathrm{SM}} \equiv \sum_{f} Q_{f} \bar{f} \gamma^{\mu} f$$

Only anomaly free possibilities:

$$U(1)_{B-L}$$
, $U(1)_{L_i-L_j}$, $U(1)_{B-3L_i}$

Qualitatively similar, but some differences in bounds

Two parameter family of models: $\{g, m_V\}$

How to couple single neutral particle to the SM?

Option 2: Mass or kinetic mixing with neutral SM particles

Dark/visible photon mixing

$$F'_{\mu\nu}F^{\mu\nu}$$

Sterile/active neutrino 1

Minimal Kinetically Mixed Dark Photon $\epsilon F'_{\mu\nu}F^{\mu\nu}$

Collider strategy: prompt decays

Resonance searches for visible daughters: BABAR, Belle II, LHCb...

Beam Dumps: LLP searches

1) LLP produced in target
2) Passes through shielding
3) Decays in detector

Gauged 5th force U(1)

Gauged 5th force U(1)

Only scenario that mainly couples to 2nd and 3rd generations

 $\phi H^{\dagger}H$ Scalar/Higgs Mixing

Sterile / Active Neutrino Mixing LHN

Asaka, Ishida 1609.06113

Overview

Part 1) Minimal Single Particle SM Extensions

Part 2) Add Light ~ GeV Dark Matter

Q: What's so great about equilibrium? A: Narrows Viable Mass Range (!)

Light DM vs. WIMPs

Light DM must be SM neutral

Otherwise would have been discovered at earlier colliders

Light DM vs. WIMPs

Light DM must be SM neutral

Otherwise would have been discovered at earlier colliders

Light DM requires light new force carriers

Overproduced without comparably light, neutral "mediators"

$$\sigma v \sim G_F^2 m_{\chi}^2 \sim 10^{-29} \,\mathrm{cm}^3 \,\mathrm{s}^{-1} \left(\frac{m_{\chi}}{\mathrm{GeV}}\right)^2$$

Always too small if mediator at weak scale

Light DM vs. WIMPs

Light DM must be SM neutral

Otherwise would have been discovered at earlier colliders

Light DM requires light new force carriers

Overproduced without comparably light, neutral "mediators"

$$\sigma v \sim G_F^2 m_{\chi}^2 \sim 10^{-29} \,\mathrm{cm}^3 \,\mathrm{s}^{-1} \left(\frac{m_{\chi}}{\mathrm{GeV}}\right)^2$$

Always too small if mediator at weak scale

Annihilation through renormalizable interactions

Higher dimension operators have same problem as electroweak forces

Light mediators are not optional!

Who's Heavier: DM or Mediator?

Hidden Annihilation

No clear experimental target Abundance set by g_{χ}

Mediator decays visibly

Direct Annihilation

 $m_{\chi} < m_{\rm med}$

Predictive thermal targets Abundance depends on *g*_{SM}

Mediator decays **invisibly***

Representative Model

Dark photon + "pseudo-Dirac" DM current $\mathcal{L} \supset g_D A'_\mu \bar{\chi}_2 \gamma^\mu \chi_1 + h.c.$

Dominant process for relic abundance

Direct annihilation $m_{A'} > m_1 + m_2$

Representative Model: Inelastic Dark Matter

Coannihilation

 χ_1 f A' f f

Upscattering + Downscattering

Excited State Decays

$$\Gamma(\chi_2 \to \chi_1 \ e^+ e^-) = \frac{4\epsilon^2 \alpha \alpha_D \Delta^5}{15\pi m_{A'}^4}$$

Beam Dump Strategy

Missing Momentum Concept

Colliders and LLP Displaced Vertices

Fortin, Tait <u>1103.3289</u>

Izaguirre, GK, Shuve 1508.03050

Testing Thermal DM Production Targets

Broad variety of search strategies required to cover "thermal target"

See also Mohlabeng 1902.05075 deNiverville, Tsai, Liu 1908.07525 Berlin, Kling 1810.01879

and... Yu-Dai Tsai and Felix Kling's talks

Testing Thermal DM Production Targets

Updated studies: LLP only searches "lifetime frontier"

Berlin, Kling 1810.01879

Concluding Remarks

Broader priors on BSM physics: light weakly coupled states

Minimal single-particle SM extensions

New U(1) forces (e.g. B-L gauge boson) Mixing with neutral SM states (e.g. sterile neutrino)

Search strategies

Prompt decays at colliders + B-factories Displaced LLP searches at beam dumps

Adding < GeV Dark Matter

LLP signatures at colliders from inelastic DM decays Comprehensively test thermal freeze out via coannihilation