

Dark Sectors \& Portal Interactions Overview

Gordan Krnjaic

CERN Forward Spectrometer Meeting, April 16, 2020

Open Questions in Fundamental Physics \& Cosmology

Neutrino Masses
Matter Asymmetry
Inflation

Accelerated Cosmic Expansion

What is this stuff?

How to look for new physics?
Mass Scale

What have we learned on the "energy frontier"?

sparticle and the LSP relative to ΔM, respectively, unless indicated otherwise

Null LHC results: no evidence yet of new SM charged particles

How to look for new physics?
Mass Scale

BSM: Smaller coupling, lower mass, SM neutral

Overview

Part 1) Minimal Single Particle SM Extensions

Part 2) Add Light ~ GeV Dark Matter

Overview

Part 1) Minimal Single Particle SM Extensions

Part 2) Add Light ~ GeV Dark Matter

How to couple single neutral particle to the SM?

Option 1: New gauge force directly coupled to SM currer

$$
\mathcal{L} \supset g V_{\mu} J_{\mathrm{SM}}^{\mu}, \quad J_{\mathrm{SM}}^{\mu} \equiv \sum_{f} Q_{f} \bar{f} \gamma^{\mu} f \quad \mathrm{~m}_{f}^{f}
$$

Only anomaly free possibilities:

$$
U(1)_{B-L}, U(1)_{L_{i}-L_{j}}, U(1)_{B-3 L_{i}}
$$

Qualitatively similar, but some differences in bounds
Two parameter family of models: $\left\{g, m_{V}\right\}$

How to couple single neutral particle to the SM?

Option 2: Mass or kinetic mixing with neutral SM particles

Scalar/Higgs mixing

$$
\phi H^{\dagger} H \rightarrow \phi h
$$

Dark/visible photon mixing $\quad F_{\mu \nu}^{\prime} F^{\mu \nu}$

Sterile/active neutrino mixing $\quad L H N$

Minimal Kinetically Mixed Dark Photon $\epsilon F_{\mu \nu}^{\prime} F^{\mu \nu}$

Bauer, Foldenauer, Jaeckel, 1803.05466

Collider strategy: prompt decays

Resonance searches for visible daughters: BABAR, Belle II, LHCb...

B-factories: continuum production
Colliders (also short-er baseline fixed targets)
$e^{+} e^{-} \rightarrow \gamma A^{\prime} \rightarrow \gamma\left(e^{+} e^{-}\right)$

$$
K^{+} \rightarrow \pi^{+} A^{\prime} \rightarrow \pi^{+}\left(e^{+} e^{-}\right)
$$

Beam Dumps: LLP searches

Target Decay Pipe Beam Dump
Detector

1) LLP produced in target
2) Passes through shielding
3) Decays in detector

Minimal Kinetically Mixed Dark Photon $\quad F_{\mu \nu}^{\prime} F^{\mu \nu}$

Bauer, Foldenauer, Jaeckel, 1803.05466

Gauged 5th force U(1)

Bauer, Foldenauer, Jaeckel, 1803.05466

Gauged 5th force U(1)

Only scenario that mainly couples to 2nd and 3rd generations

Scalar/Higgs Mixing $\quad \phi H^{\dagger} H$

Sterile / Active Neutrino Mixing $\quad L H N$

Asaka, Ishida 1609.06113

Overview

Part 1) Minimal Single Particle SM Extensions

Part 2) Add Light ~ GeV Dark Matter

Q: What's so great about equilibrium? A: Narrows Viable Mass Range (!)

nonthermal
nonthermal

This talk What do you do?"

- John Maynard Keynes

Light DM vs. WIMPs

Light DM must be SM neutral

Otherwise would have been discovered at earlier colliders

Light DM vs. WIMPs

Light DM must be SM neutral

Otherwise would have been discovered at earlier colliders

Light DM requires light new force carriers

Overproduced without comparably light, neutral "mediators"

$$
\sigma v \sim G_{F}^{2} m_{\chi}^{2} \sim 10^{-29} \mathrm{~cm}^{3} \mathrm{~s}^{-1}\left(\frac{m_{\chi}}{\mathrm{GeV}}\right)^{2}
$$

Always too small if mediator at weak scale

Light DM vs. WIMPs

Light DM must be SM neutral

Otherwise would have been discovered at earlier colliders
Light DM requires light new force carriers
Overproduced without comparably light, neutral "mediators"

$$
\sigma v \sim G_{F}^{2} m_{\chi}^{2} \sim 10^{-29} \mathrm{~cm}^{3} \mathrm{~s}^{-1}\left(\frac{m_{\chi}}{\mathrm{GeV}}\right)^{2}
$$

Always too small if mediator at weak scale

Annihilation through renormalizable interactions

Higher dimension operators have same problem as electroweak forces
Light mediators are not optional!

Who's Heavier: DM or Mediator?

Hidden Annihilation

$$
m_{\chi}>m_{\mathrm{med}}
$$

No clear experimental target Abundance set by g_{χ}

Mediator decays visibly

Direct Annihilation

$$
m_{\chi}<m_{\mathrm{med}}
$$

Predictive thermal targets Abundance depends on g_{SM}

Mediator decays invisibly*

Who's Heavier: DM or Mediator?

Hidden Annihilation

$$
m_{\chi}>m_{\mathrm{med}}
$$

No clear experimental target Abundance set by g_{χ}

Mediator decays visibly

Direct Annihilation
$m_{\chi}<m_{\mathrm{med}}$

Predictive thermal targets Abundance depends on g_{SM}

Mediator decays invisi/ 1 y*

Representative Model

Dark photon + "pseudo-Dirac" DM current

$$
\mathcal{L} \supset g_{D} A_{\mu}^{\prime} \bar{\chi}_{2} \gamma^{\mu} \chi_{1}+\text { h.c. }
$$

Dominant process for relic abundance

$$
\chi_{2}
$$

Direct annihilation

$$
m_{A^{\prime}}>m_{1}+m_{2}
$$

ϵ

Representative Model: Inelastic Dark Matter

Coannihilation

Upscattering +
Downscattering

Excited State Decays
$\Gamma\left(\chi_{2} \rightarrow \chi_{1} e^{+} e^{-}\right)=\frac{4 \epsilon^{2} \alpha \alpha_{D} \Delta^{5}}{15 \pi m_{A^{\prime}}^{4}}$

Beam Dump Strategy

$$
N_{p} \sim 10^{20} \quad[\text { production }] \times[\text { detection }] \propto \epsilon^{4}
$$

$E_{\text {beam }} \sim 10 \mathrm{GeV}$
Existing proton beam \& neutrino detector
Relativistic direct detection (no halo)
Batell, Pospelov, Ritz 0903.0363

Missing Momentum Concept

Only measure electron beam - don't require DM to scatter

$$
\text { Signal } \propto \epsilon^{2}
$$

Colliders and LLP Displaced Vertices

Hadron Collider

$$
J+E_{T}+\ell^{+} \ell^{-}
$$

Lepton Collider

$\gamma+\notin+\ell^{+} \ell^{-}$

Testing Thermal DM Production Targets

Broad variety of search strategies required to cover "thermal target"

See also
Mohlabeng 1902.05075
deNiverville, Tsai, Liu 1908.07525
Berlin, Kling 1810.01879
and... Yu-Dai Tsai and Felix Kling's talks

Testing Thermal DM Production Targets

Concluding Remarks

Broader priors on BSM physics: light weakly coupled states
Minimal single-particle SM extensions
New $\mathrm{U}(1)$ forces (e.g. B-L gauge boson)
Mixing with neutral SM states (e.g. sterile neutrino)
Search strategies
Prompt decays at colliders + B-factories
Displaced LLP searches at beam dumps
Adding < GeV Dark Matter
LLP signatures at colliders from inelastic DM decays
Comprehensively test thermal freeze out via coannihilation

