Forward Multiparticle Spectrometer for LHC

A new subsystem for CMS Run 4 (HL-LHC) 80-125m downstream of IR-5 (IR-1 option)

Two operational modes:

TODAY

A) Charged and neutral TeV hadron production spectra in $p+p, p+O, O+O$ low pileup short runs. Read out with full CMS detectors 35 Tm spectrometer magnet D1 (will be) already there!

SMP-HAD 03.20
Guaranteed physics in unexpored phase space
B) Search for new light long-lived decaying neutrals in $p+p$ at high luminosity (LLPs or WILPs) Independent trigger \& read out Steel absorber and 35 Tm sweeping magnet D1 (will be) already there!

Two half-day meetings on Forward Multiparticle Spectrometer April 16+17 2020 Purpose: present and discuss ideas. Critique and distinguish possible and not possible Plan next level of studies and especially who will contribute to a write-up / note /doc Friday 17th: Mainly measurement of very forward hadrons in $\mathrm{pp}, \mathrm{pO}, \mathrm{OO}$ at low luminosity

14:30	Beam pipe issues Vincent Baglin Considerations of a long, large diameter beam pipe CERN CERN $14: 30-15: 00$
15:00	Introduction to Mode A: Hadron spectra \quad High X_{F} low $-p_{T}$ region - uncharted territory since ISR. Including charm and antinuclei CERN
	Particle spectra, acceptancesTracking through Q1-Q3 and D1 magnets - through big pipe to detectorsMarta Sabate Gilarte CERN
16:00	Transition Radiation Detectors for hadron IDHow to identify multi-TeV $\pi / \mathrm{K} / \mathrm{p}$? Not Cherenkov, TRD!CERNMichael Cherry et al. 16:00-16:30
	Cosmic ray showers \& Forward hadrons Why astroparticle physics needs these measurements Dr Tanguy Pierog CERN 16:30-17:00
17:00	Way forward, plansCERN \quad How to make it real? Work (workers) needed to make a NOTE or LOI or similar.Mike Albrow, all 17:00-17:20l
	Next LHC forward physics meetings Christophe Royon et al. CERN 17:20-17:30

FMS - Charged L\&R arms - OVERVIEW

Very forward charged particle production - how to measure it

Use new superconducting D1 dipole (Integral B.dL = 35 Tm) as a spectrometer magnet. Downstream of IR 5 as extension of CMS in Run 4 (2027+)

Straight section in vacuum from ~ 80 m to $\sim 127 \mathrm{~m}$. Larger beam pipe $\mathbf{R}=30 \mathrm{~cm}$ (cf $R=10 \mathrm{~cm}$ now)

Vincent Baglin's talk

 for charged particles to emerge through thin windows: + \& - sides - Low pile-up onlyDetectors over 10-12 m in front of TAXN at 127 m :

Precision tracking (silicon strips or pixels) over $\sim 2 m\left(\theta_{x}, \theta_{y}\right.$ to a few $\left.\mu \mathrm{rad}\right)$
[Possible targets + tracking to study multi-TeV π, K, p, \bar{p} interactions]. --- bonus!

Imaging Hadron Calorimeter for energy measurement and muon filter

Muon tracking behind calorimeter (and behind D1)

Transition Radiation Detectors for $\gamma=\mathrm{E} / \mathrm{m}$ in $10^{3}-3.10^{4}$ region (novel)

Spectrum of high energy Cosmic Rays

$$
\phi(E) \times E^{2.5}
$$

All particle spectrum

LHCf is a small 0° calorimeter measuring photon-like and n -like showers Only $1.6 \lambda_{1}$ and 4 cm in size, $\sigma(E) / E \sim 40 \%$ for neutrons.

Arm 1: $2 \mathrm{~cm} \times 2 \mathrm{~cm} \& 4 \mathrm{~cm} \times 4 \mathrm{~cm}$
Arm 2: $2.5 \times 2.5 \& 3.2 \times 3.2 \mathrm{~cm}$

ZDC in CMS

$7 \lambda_{1}$ and $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ Must be smaller for Run 4 -include it for low-PU runs

With FMS we can measure spectra small $p_{T} \&$ up to $p_{z} \sim 3 \mathrm{TeV}$ of charged : π, K, p, d, t, (and anti-d, t) $-\mu$ and neutral : $\pi, \mathrm{K}, \rho, \varphi, \mathrm{n}, \wedge, \ldots . \& \mathrm{D}^{0} \rightarrow \mathrm{~K}-\pi$ (some acceptance)

ACCEPTANCE STUDIES being done

Production spectra of charged mesons at pp 13TeV
H.Menjo
(Dec 5th 2019)

- pp collisions with $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$
- Event generation by CRMC for Pythia8, QGJSET2-4, EPOS-LHC, Sibyll 2.3c
- $10^{\wedge} 7$ collisions for each interaction model

EPOS-LHC

Density of charged pions in p_{T}, x_{F}. Most have $p_{T}<1 \mathrm{GeV} / \mathrm{c}$ and $|\eta|>7-$ unexplored region TOTEM \& PPS (p^{\prime} s at $x_{F}>0.9$) and ZDC \& LHCf measure neutrals $\left(n+K_{L}^{0}, \pi^{0} \rightarrow \gamma \gamma\right)$ at $\theta^{\sim} 0^{\circ}$

Comparison of Monte Carlo generators, Low- $\mathrm{p}_{\mathrm{T}} \pi$ and K (H . Menjo)

(PYTHIA8: QGSJET II-4) ~ 50 at $x_{F}=0.8$
No Data! FMS reach \rightarrow ~ 0.4

Feynman $x_{F}=p_{z} / p_{\text {BEAM }}$

Fig. 2. Invariant cross sections for $\mathrm{p}+\mathrm{p} \rightarrow$ meson +X , for $p_{\mathrm{T}}=0.75 \mathrm{GeV}$, a function of $x=$ $2 p_{\mathrm{L}} / / / s$. The curves are empirical fits of the form $A \exp \left\{K(1-x)^{C}\right\}$ for $\pi^{ \pm}, \mathrm{K}^{+}$described in the text. The curve for K^{-}is hand-drawn. The behaviour at other p_{T} values is similar. If $\mu=50$ this is 4 bunch crossings

Nikolai Mokhov Ottavio Fornieri

Hitting pipe: 0.5π - and $1 \pi+$ and about 2 protons / 50 collisions. Near horizontal plane

Region looking along LHC tunnel, beam separation dipoles \& CMS way behind me. 20 cm diameter straight pipe with both beams for 50 m . (Cladding) Make this pipe larger diameter: 20 cm - 60 cm

Vincent Baglin's talk

PHYSICS GOALS for L\&R Charged particles (not complete!)

deuterons, tritons
Precise measurements of Feynman-x (x_{F}) spectra at small $p_{T}(<\sim 2 G e V)$ of: $\pi+, \pi-, K+, K-, p, \bar{p}, d, \bar{d}, t, \bar{t}, \ldots$ possibly $K_{s}^{0} \rightarrow \pi+\pi-, \Lambda^{0} \rightarrow p \pi$ (acceptance under study). In $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+\mathrm{O}$ and $\mathrm{O}+\mathrm{O}$ collisions (for cosmic ray showers in atmosphere)

Intrinsic charm: $p=\{u u d c c\}$ giving leading $D^{0} \rightarrow K^{+} \pi^{-} \& K^{-} \pi^{+}$
Full reconstruction challenging but \rightarrow forward muons
Other reconstruct-able particles: $\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}(6 \%) ; \gamma(1 \mathrm{~S}) \rightarrow \mu^{+} \mu^{-}$(2.5\%)
These are 'intrinsically' important + to understand μ and v in cosmic ray showers.
Energy Frontier and Cosmic Frontier are two US-HEP priorities!

CAVEAT: Acceptance for 2-particle states still to be calculated

Production of light nuclei and antinuclei - antiprotons, antideuterons, antitritons, $\overline{\mathrm{He}^{3}}$
Needed to understand background to Galactic Center γ-ray excess (Dark Matter Annihilation?)
Diffraction dissociation - products, e.g. $p \rightarrow n \pi+, p(\pi+\pi-), \wedge^{0} K^{+}$

Low Q^{2} frontier of QCD needs further understanding.

DPMJET prediction (Prob. Too high)
Very uncertain! Illustration only
Spectra generated by /DPMJET-MARS With $10^{6} \mathrm{pp}$ events, $\mathrm{Vs}=13 \mathrm{TeV}$ (N.Mokhov and O.Fornieri)

In 1 second, with 2808 bunches, Have 30×10^{6} bunch crossings and $30 \times 10^{6} \times \mu(=$ interactions $/ X)$ events.

Notes:
At 0.5 TeV (~ central)
$\pi^{+}=\pi^{-} \& K^{+} \cong K^{-} \& K / \pi^{\sim} 10 \%$
$\mathrm{p}^{\prime} \mathrm{s}>\pi^{+}$above 1.5 TeV and flattish; High x_{F} peak from diffraction

K-(s-ubar) steeper than K^{+}(u-sbar) π^{-}(d-ubar) steeper than π^{+}(u-dbar)

Antiprotons < K- but only by a factor ~ 0.5 Anti-deuterons/tritons/ He^{3} to measure too

Momentum distribution at the IP

Momentum distribution at the IP

Neutrons not = protons, K^{0} not $=\mathrm{K}^{+/-}$

Pipe region as currently planned for Run 4 TOP VIEW
New superconducting
Dipole 35 Tm

80m

Propose: new pipe with radius $\sim 30 \mathrm{~cm}$, length $\sim 30 \mathrm{~m}$

Vincent Baglin's talk tomorrow

TOP (BENDING) VIEW

Marta Sabate Gilarte's talk

NEGATIVE particles 1-2 TeV (through D1 aperture)

POSITIVE particles 1-2 TeV (through D1 aperture)

HADRON spectroscopy in L\&R quadrants

 in low pile-up short runs (Mode A)
Same techniques as CMS-HL-LHC Forward detectors Only small overall dimensions $-0.25 \mathrm{~m}^{2}$, shapes Julie Hogan's talk

At back of big pipe, over $\mathrm{R} \sim 10 \mathrm{~cm}-30 \mathrm{~cm}$:
Detectors over 10-12 m in front of TAXN at 127 m :
Thin vacuum window (minimise mult.scatt. over most of area)
Precision tracking (pixels and/or strips) over $\sim 2 \mathrm{~m}\left(\theta_{\mathrm{x}}\right.$ and θ_{y} to few $\left.\mu \mathrm{rad}\right)$
Timing ($\sim 20 \mathrm{ps}$) to constrain track pairs (e.g. LGAD)
High granularity EM calorimeter ($\mathrm{e}^{+} \mathrm{e}^{-}$and $\gamma \gamma$)
Imaging hadron calorimeter: hadron E measurment and muon filter
$==$ Fe toroid magnet full φ
Muon tracking behind calorimeter (e.g. GEMs)
== TAXN behind (shields the back)
Transition Radiation Detectors only needed for Low PU spectra for Mode A (hadrons) Not really essential (?) for HL LLP search - if assume $h=\pi$

At high P-U separate trigger and data stream - no need to combine with central (Only in low - PU mode SMP-HAD)

Tracking

Precision tracking immediately behind vacuum pipe window - as thin as allowed (ribs) No field behind D1 so straight tracks.

```
Hadron identification : }\pi,\textrm{K},\textrm{p},\textrm{d},..\mathrm{ TRANSITION RADIATION DETECTOR
- incorporates tracking
```


Mike Cherry's talk

CALORIMETER (toroid for μ deflection)

TO DO: Layout a detector combination with Run 4 detectors as default and simulate.

Total signal of μ-track through Calo

IRON Plate thickness $=12 \times 35 \mathrm{~mm}-(12-24) \times 68 \mathrm{~mm}$
Field in $\mathrm{Fe} \sim 2 T$ (saturation) at small R
Not uniform - decreases with R
TODO: Calculate bending with multiple scattering vs $\mathrm{p}(\mu)$ over full range $\rightarrow \mathrm{M}(\mu+\mu-)$ resolution

> Vladimir Kashikhin's talk yesterday

Several possible μ-tracking technologies $0.25 \mathrm{~m}^{2} \times \mathrm{N}$ (~4?) layers
Alexei Safonov: GEMs suitable, and almost "off-the-shelf" now.

Note: shielded by TAXN at back

Antideuterons discovered at the CERN PS (1965), seen at AGS, Serphukov, NAL.

Observed at the first pp-collider (ISR) at large angles:
B.Alper et al., Phys.Lett. 46B (1973) p. 265 : dbar/ $\pi-=(5 \pm 1) 10^{-5}$
and small angles:
M.G.Albrow et al., Nucl.Phys.B 97 (1975) p. 189 : dbar/ $\pi-=(7.6 \pm 2.3) 10^{-6}$

Those were searches for new charged long-lived particles.
How produced in pp? Coalescence model.
pbar + nbar close in phase space ($<\mathrm{p}_{0}$ parameter $\sim 25 \mathrm{MeV}$?) stick together.

Renewed interest for dark matter annihilations in galaxy center Need to know Standard Model production. (Cholin's talk at Dublin 2019)

Very clean signature in SAS:
Negative curvature - > p/Q, dE/dx - > |Q|, Calorimeter - > E, TRD - > E/m

Anything novel? E.g. strangelets in heavy ion (pO and OO) fragmentation region? (Light quasi-stable nuclei with s-quarks replacing d-quarks -unusual Q / M)

ALICE has best LHC data on antinuclei so far: Central region: $|\mathrm{y}|<0.5$ at $\sqrt{s}=7 \mathrm{TeV} \mathrm{pp}$.
PHYSICAL REVIEW C 97, 024615 (2018)
Production of deuterons, tritons, ${ }^{3} \mathrm{He}$ nuclei, and their antinuclei in $\boldsymbol{p} \boldsymbol{p}$ collisions at $\sqrt{s}=0.9,2.76$, and 7 TeV

Topical interest, possible signals of dark matter annihilation in galaxy

Can probably make a special trigger for « heavier than protons» \& get high statistics. ??

Contents lists available at ScienceDirect
Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons
T. Aramaki ${ }^{\text {a,b }}$, S. Boggs c, S. Bufalino ${ }^{\text {d }}$, L. Dal ${ }^{\mathrm{e}}$, P. von Doetinchem ${ }^{\text {f.,*, }}$

ANOTHER POTENTIAL USE OF FHS:

Inelastic (\& elastic?) cross sections of multi-TeV $\pi^{ \pm}, K^{ \pm}$etc.

IDEA:
Behind TRD-Tracker have multi-TeV identified $\pi^{ \pm}, \mathrm{K}^{ \pm}$
Can put in front of calorimeter a thin target followed by short tracker:

Very simple addition:
$\sigma_{\text {inel }}, \mathrm{N}_{\mathrm{ch}}, \sigma_{\mathrm{e}}$,

Implications for the FCC = Future CERN Colliders 100 TeV pp and heavy ion colliders FCC

Designing such machines requires advanced knowledge of very forward very energetic particles.
Beam particles hitting pipes and collimators etc.
Also particles produced in the collisions - all x_{F} (tens of $T e V$) and small angles (p_{T})
Not only protons (dominant at high x_{F}) and neutrons but also pions, kaons, etc.
We need these spectra, presently very uncertain!
So FCC will be a service to CERN's future FCC!

FHS as a Multi-particle Spectrometer

Acceptance for 2 or more particles from same event. (If pile-up, timing can help) Positive and negative particles on R \& L sides of pipe, near horizontal plane.

Acceptances being calculated by Marta for some channels ...
Details will need to be calculated for real design of system - and backgrounds

Potentially:
J/ $\psi, \psi(2 S) \rightarrow \mu+\mu-, \chi_{c} \rightarrow J / \psi+\gamma$, Drell-Yan $\mu+\mu-$
$\mathrm{K}_{\mathrm{s}}^{0} \rightarrow \pi^{+} \pi^{-}, \wedge \rightarrow \mathrm{p} \pi . \quad \mathrm{P}^{*} \rightarrow \mathrm{n} \pi+$?
$\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \ldots \chi_{c} \rightarrow \pi^{+} \pi, \mathrm{K}^{+} \mathrm{K}^{-}$, etc.
$\Lambda_{c} \rightarrow \mathrm{pK} \pi$??
Very forward charm and beauty also inferred from single leading e or μ Leptons can be identified : Track + EM calorimeter \& muon chambers behind HCAL

Muons from π, K decay will be known, and their decay lengths are very long!

```
үс\tau (\pi)=139 km at 2.5 TeV! But abundant and - > forward HE \mu-neutrinos! (FASERv)
үct (K+) = 18.5 km at 2.5 TeV !
үct (D}\mp@subsup{}{}{0})=16.5\textrm{cm}\mathrm{ at 2.5 TeV !
```


Marta Sabate Gilarte's talk

We can measure $\mathrm{D}^{0} \rightarrow \mathrm{~K}+\pi-$? Plot from Marta Gilarte (CERN)

spatial particle distribution at 116 m from the IP

Some acceptance for $\mathrm{D}^{0} \rightarrow \mathrm{~K} \pi$ but it is very challenging:
Acceptance small - OK if very well known - signal could be much bigger (Brodsky) $p \gg \pi+\gg$ K+ so mis-identification critical ... TRD challenge Mike Cherry's talk
Even with perfect identification, irremovable $K \pi$ continuum is large.
Unlike central production, do not see decay vertex and $\gamma c \tau\left(D^{0}\right)=16.5 \mathrm{~cm}$ at 2.5 TeV ! ... which smears mass resolution from $\sim 6 \mathrm{MeV}$ to $\sim 16 \mathrm{MeV}$

D^{0} peak reconstruction efficiency $=74 \%$ S/B ratio $=0.21$
$D^{0}->\pi^{+} K^{-}$

Wrong π - as K- identification
D^{0} peak reconstruction efficiency $=74 \%$ S/B ratio=0.12
$\mathrm{D}^{0}->\pi-\mathrm{K}^{+}$

Wrong p as $\mathrm{K}+$ identification

SUMMARY: Propose Forward Multiparticle Spectrometer for CMS Run 4

Low PU charged mode : many valuable measurements in unexplored region [High Lumi neutral mode: important discovery potential]

Many opportunities to participate towards a CMS Note or other documents Integrate with HL-LLP mode
Assemble a possible configuration of Run 4 detectors as spectrometer elements, and possible TRD detectors.

Integrate with full simulation of particles (as started by Marta \& Francesco)
Calculate hadron (including c) production spectra in this region with PYTHIA et al. -other MCs

Trigger and correlations with central detector (low PU)

Infrastructure and engineering, etc.
Opportunity for participation and also leadership!

Thank you

Back-ups \rightarrow

$X_{\text {Feynman }}=X_{F}=p($ hadron $) / p($ proton $)$
$x_{F}-x_{B j}$ relationship, but less direct than in deep inelastic scattering.
E.g. $p \rightarrow \pi^{+}$is from leading u adding a dbar $p \rightarrow \pi^{-}$is from leading d adding a ubar Ratio at high x reflects $u: d$ in p

Leading $\pi^{+}, \mathrm{D}^{0}, \mathrm{~B}^{+}(?)$
Diffraction dissociation
$X_{\text {Bjorken }}=X_{B j}=p($ parton $) / \mathrm{p}$ (proton)
Major industry at HERA, and these PDFs needed for hard (partonic) interactions at LHC

H1 and ZEUS

Brodsky: Intrinsic charm - p has \{uudc $\bar{c}\}$ component (1-2\%?) \rightarrow high $x_{F} \Lambda_{c}$ and D^{0}

Challenge to theorists

Strong Interactions at low-Q²

> Hadron level ~ Regge theory

Parton level ~ QCD (non-perturbative)
Leading (high x_{Bj}) u-quark or [ud] di-quark picks up an sbar or s in "string-breaking" or from s-sbar sea, to make a leading K^{+}or Λ^{0}, Σ^{0}
$\gamma c \tau(\Lambda)$ at 4.4 TeV is $316 \mathrm{~m}, \rightarrow$ p π - (acceptance?). $\Sigma^{0}-->\Lambda^{0}+\gamma(100 \%$, prompt)

Dissociation products sharing beam momentum (p opposite?)
.8
J. Singh et al. / Production of high-momentum mesons

Quark line description of leading K^{+}or Λ^{0}, Σ^{0}

Virtual (negative mass ${ }^{2}$, t-channel) exchanged baryon or meson described in Regge phenomenology: Analyticity, unitarity and crossing symmetry + continuous complex angular momentum.

Fig. 9. Effective trajectories $\alpha(t)$ obtained from a one-term triple-Regge fit, see text.

Derive it from QCD !! ?

Low PU charged mode : many valuable measurements in unexplored region High Lumi neutral mode: important discovery potential

Some opportunities to participate:
Simulate beam line, magnets as absorbers etc. Marta Sabine Gilate's talk +

Assemble a possible configuration of Run 4 detectors as spectrometer elements
Calculate hadron production spectra in this region with PYTHIA et al. -other MCs

Acceptances also for hadron pairs e.g.

```
Potentially:
J/\psi,\psi(2S) -> \mu+\mu-, \chi}\mp@subsup{\chi}{c}{}->\textrm{J}/\psi+\gamma, Drell-Yan \mu+\mu- , \gamma\gamma -> \mu+\mu
K}\mp@subsup{}{\textrm{s}}{0}->\mp@subsup{\pi}{}{+}\mp@subsup{\pi}{}{-},\wedge->\textrm{p}\pi.\quad\mp@subsup{\textrm{P}}{}{*}->\textrm{n}\pi+\mathrm{ ?
D }\mp@subsup{}{}{0}->\mp@subsup{\textrm{K}}{}{+}\mp@subsup{\pi}{}{-}\ldots..\mp@subsup{\chi}{c}{}->\mp@subsup{\pi}{}{+}\pi,\mp@subsup{\textrm{K}}{}{+}\mp@subsup{\textrm{K}}{}{-},\mathrm{ , etc.
```

Simulate sensitivity to LLIs as $\mathrm{fn}(\mathrm{M}, \tau, \sigma)$
Opportunity for participation and leadership

Some next steps (a plan)

LS 3 planning for Run 4 2027+ is now firming up Need to get officially included this year or it may be too late! LHC will start studies only when CMS officially asks

March 20th (Friday) present the Low-lumi hadron spectroscopy to SMP-HAD subgroup Intro (MGA) - Cosmic Ray MC’s (Tanguy Pierog, KIT) - TRD status (Mike Cherry, LSU) March 27th (Friday) present the HL LLI search to EXO-LLI subgroup.
(? Matt Low, Christina Yang Gao anything yet?)
April 16+17 LHC Forward Physics open meeting (not restricted to CMS)
Thursday 16th: Progress in Transition Radiation Detector development for TeV hadron ID
Friday 17th: FMS issues:
Machine configuration, beam pipe
Anticipated spectra through D1 - single hadrons, charm D0, antinuclei ...
Cosmic ray shower simulation programs
Detector configuration possibilities
Sensitivity to LLI's (M, couplings, lifetimes etc.) cf FASER etc.
Etc.

Grow team of interested contributors. TRD group inside CMS (?) or outside to join. April/May : request presentation to CMS weekly

The hadronic interaction model SibyLl 2.3c and inclusive lepton fluxes

A. Fedynitch, F. Riehn, R. Engel, T.K.Gaisser and T. Stanev, arXiv:1806.04140

TABLE II. Experiments that collected data on charm production including the corresponding projectile-target configuration and the accessible longitudinal phase space. These data have been used for model development and parameter estimation.

The hadronic interaction model SIBYLL 2.3C and inclusive lepton fluxes
A. Fedynitch, F. Riehn, R. Engel, T.K.Gaisser and T. Stanev, arXiv:1806.04140

To illustrate the uncertainties in expected v fluxes from cosmic ray showers Refining and tuning the models will impact UHE CR and v physics

From IR5 to first quadrupole Q1

Figure 11.9: Layout of CMS beam-pipe from interaction point to first quadrupole. All dimensions are in millimeters.

A Very Forward Hadron Spectrometer for the LHC and Cosmic Ray Physics
 arXiv:1811.02047v1

Michael Albrow* ${ }^{*}$

Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
ORCID 0000-0001-7329-4925
E-mail: albrow@fnal.gov

Charged hadron production in hadron-hadron collisions with longitudinal momentum fraction Feynman-x, x_{F}, between 0.1 and 0.9 has not been measured above $\sqrt{s}=63 \mathrm{GeV}$ at the CERN Intersecting Storage Rings. I discuss a way to measure this at the Large Hadron Collider at $\sqrt{s}=13 \mathrm{TeV}$, which is 40,000 times higher in equivalent fixed target energy, and important for understanding cosmic ray showers.

Short write-up
But then location uncertain
Only L\&R considered
U\&D is later addition

2nd World Summit: Exploring the Dark Side of the Universe
25-29 June, 2018
University of Antilles, Pointe-Ãă-Pitre, Guadeloupe, France

Presentations at Forward and Diffractive Workshops in 2019:
Dublin, Forward LHC Physics, June 2019
Nicosia, Cyorus Low-x, August 2019
Guanajuato, Mexico November 2019: Forward LHC \& Cosmic Rays etc,

