Particle distributions, acceptances for a Forward Hadron Spectrometer

M. SABATÉ-GILARTE^{1,2}, F. CERUTTI¹

¹EN-STI-BMI @ CERN

²UNIVERSITY OF SEVILLE

Forward Spectrometer meeting

17/04/2020

Overview

≻Outline from D1 to TAXN.

≻Effect of the vacuum pipe size.

➢ Particle distribution at 116 m.

 \succ (K⁻, π^+) and (K⁺, π^-) pair from D⁰ and D⁰-bar.

 \succ K⁰ and Λ^{0} .

Forward Spectrometer meeting

17/04/2020

Outline from D1 to TAXN

Limited space for the enlargement of the vacuum pipe downstream the D1 due to the presence of the cold diode structure.

Forward Spectrometer meeting

17/04/2020

Effect of the vacuum pipe size

•The size of the vacuum pipe plays an role in the particle distribution due to the interaction of the collision debris with the pipe itself removing high energy particles and generating secondary particle shower.

• This section has the aim of showing a comparison of two different set-ups:

- Reference vacuum pipe layout: 7.5 cm 10.635 cm 12.5 cm in radius.
- Absence of vacuum pipe from 84.3 m onward.

• Simulation conditions:

- IR5 (CMS).
- Vertical crossing (VC) of +250 µrad half crossing angle.
- Instantaneous luminosity of 5.10³⁴ cm⁻²s⁻¹.
- Cross section for p-p collision 80 mb.
- Results obtained at 100 m from IP.
- 1 TeV energy cut applied for all kind of particles.

Forward Spectrometer meeting

17/04/2020

Negative charged particles

10⁶

10⁵

10⁴

10³

10⁶

10⁵

10⁴

10³

30

[1/cm²s]

30

[1/cm²s]

Positive charged particles

Positive ch. part. p_z =2000-3000 GeV at 100 m for 5L₀ VC-up

107

10⁶

105

10⁴

10³

[1/cm²s]

Negative charged particles

Negative ch. part. p_z =2000-3000 GeV at 100 m for 5L₀ VC-up

10

20

Including pipe effect

Negative ch. part. p_z =3000-4000 GeV at 100 m for 5L₀ VC-up

Pz = 3 - 4 TeV

VC

Particle distribution at 116 m

✓ Simulation conditions:

✓ HL-LHC optics v1.5.

✓ ATLAS (**IR1**) and CMS (**IR5**).

✓ Instantaneous luminosity: **5**•**10**³⁴ cm⁻²s⁻¹.

✓ Cross section for the p-p collision: 80 mb.

Horizontal (250 μrad) and Vertical (+ 250 μrad) crossing.

✓ Energy cut at 1 TeV for all particle type implemented in the simulations.

✓ All studies are obtained at **116 m from the IP**.

✓ *Outline*:

- ✓ Particle spatial distribution.
- ✓ Particle distribution based on generation number (GN):
 - \checkmark GN = 1 : original collision products.
 - ✓ GN > 2 : re-interaction products.

Forward Spectrometer meeting

17/04/2020

✓ *Particle spatial distribution:*

✓ Horizontal crossing in IR1 (ATLAS).

✓ Vertical crossing in IR5 (CMS).

✓ Particle distribution based on generation number.

Forward Spectrometer meeting

17/04/2020

✓ Particle spatial distribution.

✓ Particle distribution based on generation number:

✓ Horizontal crossing in IP1 (ATLAS).

✓ Vertical crossing in IP5 (CMS).

Forward Spectrometer meeting

17/04/2020

Collision products

Generation Number = 1

Negative

 $P_{z} = 1 - 2$ TeV

Positive

Negative

 $P_{z} = 2 - 3$ TeV

Positive

Collision products

Generation Number = 1

Negative

 $P_z = 3 - 4 \text{ TeV}$

Positive

Collision products

Generation Number = 1

Collision products

Generation Number = 1

Particle distribution at 116 m

✓ CMS (IR5) for HL-LHC optics v1.5: Vertical-up crossing of +250 µrad half crossing angle.

✓ Particle fluence and muon spectra around 115 - 116 m.

✓ Normalization per bunch crossing (140 p-p collisions).

✓ No cut in energy.

Forward Spectrometer meeting

17/04/2020

F. Cerutti

PARTICLE FLUENCE RATE per bunch crossing

without toroid

with toroid

Forward Spectrometer meeting

17/04/2020

F. Cerutti

[cm⁻² t

MUON SPECTRUM

number of muons per bunch crossing (PU=140) inside a 30 cm radius: $0.45 \mu^+ (0.45 \mu^-)$ $0.3 \mu^+ (0.35 \mu^-)$

Forward Spectrometer meeting

17/04/2020

F. Cerutti

NEUTRON SPECTRUM

Forward Spectrometer meeting

17/04/2020

F. Cerutti

(K⁻, π^+) and (K⁺, π^-) pair from D⁰ and D⁰-bar

✓ CMS (**IR5**) for HL-LHC optics v1.5.

Vertical-up crossing of +250 μrad half crossing angle.

✓ Scoring at **116 m from the IP** after the D1 for decay products.

 \checkmark Correlation to the parent D° and D°-bar momentum.

Forward Spectrometer meeting

17/04/2020

(K⁻, π^+) and (K⁺, π^-) pair from D⁰ and D⁰-bar at 116 m

Spatial distribution of (k, π^+) pair

Forward Spectrometer meeting

17/04/2020

D° and D°-bar phase space at production

 p_T vs. XF for Do close to the IP before decay

Forward Spectrometer meeting

17/04/2020

K^0 and Λ^0 particle fluence

✓ ATLAS (IR1) and CMS (IR5) for HL-LHC optics v1.5.

 \checkmark Horizontal and Vertical-up crossing of **250** μ rad half crossing angle.

✓ Instantaneous luminosity: 5·10³⁴ cm⁻² s⁻¹.

✓ Scoring at **84.3 m from the IP** after the D1.

 \checkmark Fluence presented for different p_z ranges.

Forward Spectrometer meeting

17/04/2020

K0

 $\Lambda 0$

K0

Λ0

K0

 $\Lambda 0$

Thank you for your attention

Particle spectra: differential fluence rate

- ✓ IR1 (ATLAS).
- ✓ HL-LHC optics v1.5.
- ✓ Horizontal crossing.
- ✓ Half crossing angle of **250 μrad**.
- ✓ Instantaneous luminosity: 5·10³⁴ cm⁻²s⁻¹.
- ✓ Spectra obtained at **116 m** from the IP.

17/04/2020

Set-up for the calculation

- Big pipe of R_{in} = 30 cm along ~ 43 m before the TAXN.
- This pipe radius is NOT compatible with the presence of the diode structure after D1.
- The spectra was calculated in different regions centered at 116 m from the IP.
- The differentiation between left and right is related to the asymmetry introduces by the D1 and the effect of the crossing angle that introduces an additional asymmetry wrt the center.

17/04/2020

Neutron spectra

Forward Spectrometer meeting

17/04/2020

Photons spectra 10⁸ E [dn/dE] fluence rate [cm⁻² s⁻¹] 107 Similar spatial distribution as neutrons, following the crossing angle direction. 10⁶ 10⁵ Photons up to few TeV are present within the first 10 cm. Further from the center, 104 the maximum energy drops down to few R1 hundreds of GeV. 10³ R2 R3 10² L1 L2 L3 10¹ 0.0001 0.001 0.01 0.1 10 100 1000 1000 1 e⁻ and e⁺ spectra E [GeV] 108 R1 R2 E [dn/dE] fluence rate [cm⁻² s⁻¹] 107 R3 L1 10⁶ L2 The population of low energy e⁻ and e⁺ L3 on the right and left side is identical. 10⁵ 10⁴ No peak of high energy e^{-} and e^{+} is expected. 10³ 10² 10^{1} 0.0001 0.001 0.01 0.1 10 100 1000

Forward Spectrometer meeting

17/04/2020

M. Sabaté-Gilarte

1000

1

E [GeV]

106 R1 R2 E [dn/dE] fluence rate [cm⁻² s⁻¹] R3 This spectra includes both π^+ and π^- . 10⁵ L1 L2 TeV π^+ loosely the proton trayectory. L3 104 10³ 10² 10^{1} 0.01 0.001 0.1 10 100 1000 1000 1 Charged kaons spectra E [GeV] 106 R1 R2 E [dn/dE] fluence rate [cm⁻² s⁻¹] R3 10⁵ L2 This spectra includes both K⁺ and K⁻. L3 10^{4} 10³ 10² 10^{1} 0.1 0.0001 0.001 0.01 10 100 1000 1 1000 E [GeV]

Charged pions spectra

Forward Spectrometer meeting

17/04/2020