Particle distributions, acceptances for

a Forward Hadron Spectrometer

M. SABATÉ-GILARTE ${ }^{1,2}$, F. CERUTTI ${ }^{1}$
${ }^{1}$ EN-STI-BMI @ CERN
²UNIVERSITY OF SEVILLE

Overview

$>$ Outline from D1 to TAXN.
$>$ Effect of the vacuum pipe size.

PParticle distribution at 116 m .
$>\left(K^{-}, \pi^{+}\right)$and $\left(K^{+}, \pi^{-}\right)$pair from D^{0} and D^{0}-bar.
$>K^{0}$ and Λ^{0}.

Outline from D1 to TAXN

Limited space for the enlargement of the vacuum pipe downstream the D1 due to the presence of the cold diode structure.

Effect of the vacuum pipe size

- The size of the vacuum pipe plays an role in the particle distribution due to the interaction of the collision debris with the pipe itself removing high energy particles and generating secondary particle shower.
-This section has the aim of showing a comparison of two different set-ups:
- Reference vacuum pipe layout: $7.5 \mathrm{~cm}-10.635 \mathrm{~cm}-12.5 \mathrm{~cm}$ in radius.
- Absence of vacuum pipe from 84.3 m onward.
- Simulation conditions:
- IR5 (CMS).
- Vertical crossing (VC) of $+250 \mu$ rad half crossing angle.
- Instantaneous luminosity of $5 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.
- Cross section for p-p collision 80 mb .
- Results obtained at 100 m from IP.
- 1 TeV energy cut applied for all kind of particles.

Negative charged particles

Positive charged particles

Negative ch. part. $\mathrm{p}_{\mathrm{z}}=1000-2000 \mathrm{GeV}$ at 100 m for $5 \mathrm{~L}_{0}$ VC-up

$\mathrm{Pz}=1-2 \mathrm{TeV}$

Positive ch. part. $\mathrm{p}_{\mathrm{z}}=1000-2000 \mathrm{GeV}$ at 100 m for $5 \mathrm{~L}_{0}$ VC-up

Positive ch. part. $\mathrm{p}_{2}=1000-2000 \mathrm{GeV}$ at 100 m for $5 \mathrm{~L}_{0}$ VC-up

$\mathrm{Pz}=2-3 \mathrm{TeV}$

Negative charged particles

Positive charged particles
Including pipe effect
Negative ch. part. $\mathrm{p}_{\mathrm{z}}=3000-4000 \mathrm{GeV}$ at 100 m for $5 \mathrm{~L}_{0}$ VC-up

$\mathrm{Pz}=3-4 \mathrm{TeV}$

Positive ch. part. $\mathrm{p}_{\mathrm{z}}=3000-4000 \mathrm{GeV}$ at 100 m for $5 \mathrm{~L}_{0}$ VC-up

Particle distribution at 116 m

\checkmark Simulation conditions:
\checkmark HL-LHC optics v1.5.
\checkmark ATLAS (IR1) and CMS (IR5).
\checkmark Instantaneous luminosity: $\mathbf{5 \cdot 1 0 ^ { 3 4 }} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$.
\checkmark Cross section for the p-p collision: 80 mb .
\checkmark Horizontal ($\mathbf{2 5 0} \mu \mathrm{rad}$) and Vertical ($+\mathbf{2 5 0} \mu \mathrm{rad}$) crossing.
\checkmark Energy cut at 1 TeV for all particle type implemented in the simulations.
\checkmark All studies are obtained at 116 m from the IP.
\checkmark Outline:
\checkmark Particle spatial distribution.
\checkmark Particle distribution based on generation number (GN):
$\checkmark G N=1$: original collision products.
$\checkmark G N>2$: re-interaction products.
\checkmark Particle spatial distribution:
\checkmark Horizontal crossing in IR1 (ATLAS).
\checkmark Vertical crossing in IR5 (CMS).

\checkmark Particle distribution based on generation number.

VC-up

Positivie ch. part. $p_{z}=1000-2000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Negative ch. part. $p_{z}=1000-2000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Positivie ch. part. $p_{z}=1000-2000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

VC-up

Negative ch. part. $p_{z}=2000-3000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Positivie ch. part. $p_{z}=2000-3000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Negative ch. part. $p_{z}=2000-3000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Positivie ch. part. $p_{z}=2000-3000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

VC-up

Positivie ch. part. $\mathrm{p}_{\mathrm{z}}=3000-4000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Negative ch. part. $p_{z}=3000-4000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Positivie ch. part. $p_{z}=3000-4000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

VC-up

Positivie ch. part. $p_{z}=4000-5000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Negative ch. part. $p_{z}=4000-5000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Positivie ch. part. $p_{z}=4000-5000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

VC-up

Positive ch. part. $\mathrm{p}_{\mathrm{z}}=5000-6000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Negative ch. part. $p_{z}=5000-6000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Positivie ch. part. $\mathrm{p}_{\mathrm{z}}=5000-6000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

\checkmark Particle spatial distribution.

\checkmark Particle distribution based on generation number:
\checkmark Horizontal crossing in IP1 (ATLAS).
\checkmark Vertical crossing in IP5 (CMS).

Generation Number $=1$
Collision products
Generation Number = 1

Generation Number ≥ 2

Positive ch. part. $p_{z}=1000-2000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Generation Number ≥ 2
Positive ch. part. $p_{z}=1000-2000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Generation Number $=1$
Collision products
Generation Number $=1$
Negative ch. part. $\mathrm{p}_{\mathrm{z}}=2000-3000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Generation Number ≥ 2
Negative ch. part. $\mathrm{p}_{\mathrm{z}}=2000-3000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Positive ch. part. $\mathrm{p}_{\mathrm{z}}=2000-3000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Generation Number ≥ 2
Positive ch. part. $p_{z}=2000-3000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$ products

Generation Number $=1$
Collision products
Generation Number $=1$
Negative ch. part. $p_{z}=3000-4000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Generation Number ≥ 2
Negative ch. part. $\mathrm{p}_{\mathrm{z}}=3000-4000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Positive ch. part. $p_{z}=3000-4000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Generation Number ≥ 2
Positive ch. part. $p_{z}=3000-4000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$ products

Generation Number $=1$
Collision products
Generation Number $=1$
Negative ch. part. $p_{z}=4000-5000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Generation Number ≥ 2
Negative ch. part. $p_{z}=4000-5000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Positive ch. part. $p_{z}=4000-5000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Generation Number ≥ 2
Positive ch. part. $p_{z}=4000-5000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$ products

Generation Number $=1$
Collision products
Generation Number $=1$
Negative ch. part. $p_{z}=5000-6000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Generation Number ≥ 2
Negative ch. part. $p_{z}=5000-6000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Positive ch. part. $p_{z}=5000-6000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$

Generation Number ≥ 2
Positive ch. part. $p_{z}=5000-6000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0} \mathrm{HC}$ products
${ }_{20}$ P. part. $\mathrm{p}_{\mathrm{z}}=5000-6000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$

Generation Number $=1$
Negative ch. part. $\mathrm{p}_{\mathrm{z}}=1000-2000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Generation Number ≥ 2

Collision products
Generation Number = 1

Negative
$P_{z}=1-2 \mathrm{TeV}$

Generation Number ≥ 2
Positive ch. part. $p_{z}=1000-2000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Generation Number $=1$
Negative ch. part. $\mathrm{p}_{\mathrm{z}}=2000-3000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Generation Number ≥ 2

Collision products

Generation Number = 1

Generation Number ≥ 2

re-interaction products
$P_{z}=2-3 \mathrm{TeV}$

Generation Number $=1$
Negative ch. part. $p_{z}=3000-4000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Generation Number ≥ 2

Collision products

Generation Number = 1

$P_{z}=3-4 \mathrm{TeV}$
Positive

Generation Number $=1$
Negative ch. part. $\mathrm{p}_{\mathrm{z}}=4000-5000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Generation Number ≥ 2

Collision products
Generation Number = 1

$$
P_{z}=4-5 \mathrm{TeV}
$$

Generation Number $=1$
Negative ch. part. $\mathrm{p}_{\mathrm{z}}=5000-6000 \mathrm{GeV}$ at 116 m for $5 \mathrm{~L}_{0}$ VC-up

Generation Number ≥ 2

Collision products
Generation Number = 1

Particle distribution at 116 m

\checkmark CMS (IR5) for HL-LHC optics v1.5: Vertical-up crossing of $\mathbf{+ 2 5 0} \mu \mathrm{rad}$ half crossing angle.
\checkmark Particle fluence and muon spectra around 115-116m.
\checkmark Normalization per bunch crossing (140 p-p collisions).
\checkmark No cut in energy.

PARTICLE FLUENCE RATE per bunch crossing

without toroid

Proton fluence rate at 115 m (per bunch crossing)

with toroid

Proton fluence rate at 115 m (per bunch crossing) ON

Muon+ fluence rate at 115 m (per bunch crossing)

Pion+ fluence rate at 115 m (per bunch crossing) ON

Muon+ fluence rate at 115 m (per bunch crossing) ON

MUON SPECTRUM

positive muons per bunch crossing

NEUTRON SPECTRUM

neutrons per bunch crossing

$\left(K^{-}, \pi^{+}\right)$and $\left(K^{+}, \pi^{-}\right)$pair from D^{0} and D^{0}-bar

\checkmark CMS (IR5) for HL-LHC optics v1.5.
\checkmark Vertical-up crossing of $+\mathbf{2 5 0} \mu$ rad half crossing angle.
\checkmark Scoring at 116 m from the IP after the D1 for decay products.
\checkmark Correlation to the parent D° and D°-bar momentum.

$\left(K^{-}, \pi^{+}\right)$and $\left(K^{+}, \pi^{-}\right)$pair from D^{0} and D^{0}-bar at 116 m

Spatial distribution of (k^{-}, π^{+}) pair

These are meson pairs for which a D^{0} or a D^{0}-bar were generated at the IP with positive momentum, i.e., $p_{z}>0$.
$212\left(K^{-}, \pi^{+}\right)$pairs out of $\sim 4 e 9$ p-p collisions
Spatial distribution of $\left(\mathrm{k}^{+}, \pi^{-}\right)$pair reaching

D° and D^{0}-bar phase space at production

p_{T} vs. XF for Do close to the IP before decay

K^{0} and Λ^{0} particle fluence

\checkmark ATLAS (IR1) and CMS (IR5) for HL-LHC optics v1.5.
\checkmark Horizontal and Vertical-up crossing of $\mathbf{2 5 0} \mu \mathrm{rad}$ half crossing angle.
\checkmark Instantaneous luminosity: $5 \cdot 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$.
\checkmark Scoring at 84.3 m from the IP after the D1.
\checkmark Fluence presented for different p_{z} ranges.

Thank you for your attention

Particle spectra: differential fluence rate

\checkmark IR1 (ATLAS).
\checkmark HL-LHC optics v1.5.
\checkmark Horizontal crossing.
\checkmark Half crossing angle of $250 \mu \mathrm{rad}$.
\checkmark Instantaneous luminosity: $\mathbf{5 \cdot 1 0 ^ { 3 4 }} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$.
\checkmark Spectra obtained at 116 m from the IP.

Set-up for the calculation

- Big pipe of $R_{\text {in }}=30 \mathrm{~cm}$ along $\sim 43 \mathrm{~m}$ before the TAXN.
- This pipe radius is NOT compatible with the presence of the diode structure after D1.
- The spectra was calculated in different regions centered at 116 m from the IP.
- The differentiation between left and right is related to the asymmetry introduces by the D1 and the effect of the crossing angle that introduces an additional asymmetry wrt the center.

Neutron spectra

- Thermal neutrons are present.
- The spectra are similar up to few hundreds of GeV.
- Diffracting protons are expected at radial position according to the horizontal crossing angle.

Photons spectra

Charged pions spectra

