Cosmic Ray Showers and Forward Hadrons

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

Forward spectrometer meeting, CERN April the 17th 2020

Outline

- Introduction
- Hadronic interactions for cosmic rays (Monte-carlo (MC))
- Results for Extended air showers (EAS)
- Uncertainties in forward spectra

New input from LHC crucial to reproduce EAS data consistently: too large uncertainties in model for forward spectra and light ion interactions.

Energy Spectrum

Introduction

Extensive Air Shower Observables

Longitudinal Development

number of particles vs depth

$$X = \int_{h}^{\infty} dz \, \rho(z)$$

Larger number of particles at X_{max}

For many showers

- mean : <X_{max}>
- ◆ fluctuations : RMS X_{max}
- depends on primary mass
- depends on Hadr. Inter.
- Lateral distribution function (LDF)
 - particle density at ground vs distance to the impact point (core)
 - can be muons or electrons/gammas or a mixture of all.
 - Others: Cherenkov emissions, Radio signal

Sensitivity to Hadronic Interactions

- Air shower development dominated by few parameters
 - mass and energy of primary CR
 - ightharpoonup cross-sections (p-Air and (π -K)-Air)
 - (in)elasticity
 - multiplicity
 - charge ratio and baryon/resonance production
- Change of primary = change of hadronic interaction parameters
 - cross-section, elasticity, mult. ...

With unknown mass composition hadronic interactions can only be tested using various observables which should give consistent mass results

Cosmic Ray Analysis from Air Showers

- EAS simulations necessary to study high energy cosmic rays
 - complex problem: identification of the primary particle from the secondaries

- Hadronic models are the key ingredient!
 - follow the standard model (QCD)
 - but mostly non-perturbative regime (phenomenology needed)
 - main source of uncertainties
- Which model for CR ? (alphabetical order)
 - **DPMJETIII.17-1** by S. Roesler, <u>A. Fedynitch</u>, R. Engel and J. Ranft
 - **➡ EPOS (1.99/LHC/3)** (from VENUS/NEXUS before) by H.J. Drescher, F. Liu, T. Pierog and K.Werner.
 - QGSJET (01/II-03/II-04/III) by S. Ostapchenko (starting with N. Kalmykov)
 - Sibyll (2.1/2.3c) by E-J Ahn, R. Engel, R.S. Fletcher, T.K. Gaisser, P. Lipari, F. Riehn, T. Stanev

Cross-Section

For all models cross-section calculation based on optical theorem

total cross-section given by elastic amplitude

$$\sigma_{\text{tot}} = \frac{1}{s} \Im m(A(s, t \to 0))$$

- different amplitudes in the models but free parameters set to reproduce all p-p cross-sections
- basic principles + high quality LHC data = same extrapolation

Pseudorapidity

Field theory: scattering via the exchange of an excited field

Cosmic Ray Models

- parton, hadron, quasi-particle = Reggeon or Pomeron (vacuum excitation)
- QCD based theory so at high energy, perturbative QCD can be used to build the field amplitude (amplitude used for the cross-section)
 - all minijet based (parton cascade and pQCD born process hadronized using string fragmentation) but different definitions

soft+hard in different components

external parton distribution functions (GRV98,cteq14)

connection to projectile/target with small "x"

soft+hard in the same amplitude

own parton distribution function compatible with HERA data (not for QGSJET01: pre-**HERA time**)

connection to projectile/target with large "x"

Ostapchenko et al. Phys.Rev. D94 (2016) no.11, 114026

Pseudorapidity

- Field theory : scattering via the exchange of an excited field
 - parton, hadron, quasi-particle = Reggeon or Pomeron (vacuum excitation)
- QCD based theory so at high energy, perturbative QCD can be used to build the field amplitude (amplitude used for the cross-section)
 - all minijet based (parton cascade and pQCD born process hadronized using string fragmentation) but different definitions

Energy Evolution

- Multiple scattering not enough to reconcile pQCD minijet crosssection and total cross-section
 - non-linear effect should be taken into account (interaction between scatterings)
- Solution depends on amplitude definition

Cosmic Ray Models

- hard amplitude depend on minimum p,
- parametrize minimum p_t as a function of energy (and impact parameter for DPMJETIII)
- fit to data (multiplicity and cross-section)

- → fixed minimum p, in hard part
- theory based "fan diagrams" re-summed to infinity without energy sharing

- fixed minimum p_t in hard part
- enhanced diagrams not compatible with energy sharing
- modification of vertex function to take into account non linear effects (data driven phenomenological approach)

- Multiple scattering not enough to reconcile pQCD minijet crosssection and total cross-section
 - non-linear effect should be taken into account (interaction between scatterings)
- Solution depends on amplitude definition
 - still large uncertainties at high energy (but reduced after LHC)

Inelasticity

- In most of the cases, the projectile is destroyed by the collision
 - non-diffractive scattering: high energy loss for leading particle, high multiplicity
- In 10-20% of the time, the projectile have a small energy loss (high elasticity) and is unchanged
 - diffractive scattering : low energy loss, low multiplicity on target side
- Model difference mostly at technical level (and choice of data)

Air Showers

- +/- 20g/cm² is a realistic uncertainty band but :
- minimum given by QGSJETII-04 (high multiplicity, low elasticity)
- maximum given by Sibyll 2.3c (low multiplicity, high elasticity)
- anything below or above won't be compatible with LHC data

To reduce theoretical uncertainties below experimental one, basic hadronic properties should be known better than 5%!

arXiv:1812.06772

Introduction

WHISP Working Group

- Many muon measurement available
 - Auger, EAS-MSU, KASCADE-Grande, IceCube/IceTop, HiRes-MIA, NEMOD/DECOR, SUGAR, TA, Yukutsk
- Working group (WHISP) created to compile all results together. Analysis led and presented on behalf of all collaborations by H. Dembinski at UHECR 2018: H. Dembinski (LHCb, Germany),
 - L. Cazon (Auger, Portugal), R. Conceicao (AUGER, Portugal),
 - F. Riehn (Auger, Portugal), T. Pierog (Auger, Germany),
 - Y. Zhezher (TA, Russia), G. Thomson (TA, USA), S. Troitsky (TA, Russia), R. Takeishi (TA, USA),
 - T. Sako (LHCf & TA, Japan), Y. Itow (LHCf, Japan),
 - J. Gonzales (IceTop, USA), D. Soldin (IceCube, USA),
 - J.C. Arteaga (KASCADE-Grande, Mexico),
 - I. Yashin (NEMOD/DECOR, Russia). E. Zadeba (NEMOD/DECOR, Russia)
 - N. Kalmykov (EAS-MSU, Russia) and I.S. Karpikov (EAS-MSU, Russia)

Global Behavior

- Clear muon excess in data compared to simulation
 - Different energy evolution between data and simulations

Significant non-zero slope (>8σ)

- Different energy or mass scale cannot change the slope
 - Different property of hadronic interactions at least above 10¹⁶ eV

Constraints from Correlated Change

- One needs to change energy dependence of muon production by ~+4%
- To reduce muon discrepancy β has to be change
 - X_{max} alone (composition) will not change the energy evolution
 - \rightarrow β changes the muon energy

$$\beta \text{ changes the muon energy}$$

$$\text{evolution but not } X_{\text{max}}$$

$$\beta = \frac{\ln(N_{\text{mult}} - N_{\pi^0})}{\ln(N_{\text{mult}})} = 1 + \frac{\ln(1 - c)}{\ln(N_{\text{mult}})}$$

$$\rightarrow$$
 +4% for $\beta \rightarrow$ -30% for $c = \frac{N_{\pi^0}}{N_{mul}}$

+4% for
$$\beta$$
 -> -30% for $c = \frac{N_{\pi^0}}{N_{mult}}$

• Measure@LHC: $R = \frac{E_{e/m}}{E_{had}} \approx \frac{c}{1-c}$

$$N_{\mu} = A^{1-\beta} \left(\frac{E}{E_0}\right)^{\beta}$$

Constraints from Correlated Change

- One needs to change energy dependence of muon production by ~+4%
- To reduce muon discrepancy β has to be change
 - \rightarrow X_{max} alone (composition) will not change the energy evolution
 - \rightarrow β changes the muon energy evolution but not X_{max}

$$\beta = \frac{\ln\left(N_{\textit{mult}} - N_{\textit{x}^0}\right)}{\ln\left(N_{\textit{mult}}\right)} = 1 + \frac{\ln\left(1 - c\right)}{\ln\left(N_{\textit{mult}}\right)}$$

$$\rightarrow$$
 +4% for β \rightarrow -30% for $c = \frac{N_{\pi^0}}{N_{mult}}$

+4% for
$$\beta$$
 -> -30% for $c = \frac{N_{\pi^0}}{N_{mult}}$

Measure@LHC: $R = \frac{E_{e/m}}{E_{had}} \approx \frac{c}{1-c}$

Possible Particle Physics Explanations

- A 30% change in particle charge ratio ($\alpha = \frac{N_{\pi^0}}{N_{mult}}$) is huge !
- ightharpoonup Possibility to increase N_{mult} limited by X_{max}
- New Physics ?
 - Chiral symmetry restoration (Farrar et al.) ?
 - Strange fireball (Anchordoqui et al.) ?
 - String Fusion (Alvarez-Muniz et al.) ?
 - Problem: no strong effect observed at LHC (~10¹⁷ eV)
- Unexpected production of Quark Gluon Plasma (QGP) in light systems observed at the LHC (at least modified hadronization)
 - Reduced α is a sign of QGP formation (Baur et al. 1902.09265 [hep-ph]) !
 - Not properly done in EPOS LHC (QGP only in extreme conditions)
 - limit: α changed at most by 20-25% but effect can be applied to lower energies (cumulative effect)

Should Everything Be Taken into Account in CR Models?

Models have different philosophies!

- number of parameters increase with data set to reproduce
- predictive power may decrease with number of parameters
- predictive power increase if we are sure not to neglect something
- models for CR only
- fast and not suppose to describe everything
- no detailed hard scattering or collective effects
- silvy freeze out freeze out non-eq. hadr. i.a. HG
 QGP
 pre-eq. EPOS
 primary interaction
 - heavy ion model intended to be used for high energy physics
 - limited development for collective effects but correct hard scattering

- developed first for heavy ion interactions
- detailed description of every possible "soft" observable (not good for hard scattering yet)
- sophisticated collective effect treatment (real hydro for EPOS 2 and 3)
- very large complete data set (LEP, HERA, SPS, RHIC, LHC)

Should Everything Be Taken into Account in CR Models?

Models have different philosophies!

- number of parameters increase with data set to reproduce
- predictive power may decrease with number of parameters
- predictive power increase if we are sure not to neglect something

Is there a direct influence on air showers?

Core-corona effect in EPOS only (core = high density = collective hadronization)

Modified EPOS with Extended Core

- Core in EPOS LHC appear too late
 - Recent publication show the evolution of chemical composition as a function of multiplicity (core-corona effect)
 - Large amount of (multi)strange baryons produced at lower multiplicity than predicted by EPOS LHC
- Create a new version EPOS QGP with more collective hadronization
 - Core created at lower energy density
 - Effect at lower energies AND larger rapidities
 - More remnant hadronized with collective hadronization
 - Collective hadronization using grand canonical ensemble instead of microcanonical (closer to statistical decay)

Comparison with Data

- Collective hadronization gives a result compatible with data
 - Still different energy evolution between data and simulations

Significance to be tested

- Core-corona approach might be a key point to solve muon puzzle
 - Systematic study in Baur et al.: 1902.09265 [hep-ph]

LHC acceptance

- p-p data of central detectors used to reduce uncertainty by factor ~2
 - p-Pb difficult to compare to CR models (only EPOS)
 - special centrality selection
 - → p-O (O-O) ?
- Maximum energy flow relevant for EAS
 - **→** x>0.01 (η~8)
- Limited forward measurements
 - Only calorimetric (CASTOR, LHCf)
 - No particle identification
 - forward+pid ?

Forward Production in p-Air

Simulations at 10¹⁷eV lab energy ~ LHC cms energy

→ Around 10% precision needed in relevant x range (0.01 to 0.3)

Summary

New input from LHC crucial to reproduce EAS data consistently: too large uncertainties in model for forward spectra and light ion interactions.

- WHISP working group clearly established a muon production deficit in air shower simulations.
 - Exact scale not known (dependent on energy and mass)
- Most "natural" explanation given by a change in pion charge ratio.
 - \rightarrow Other possibilities limited by X_{max} (multiplicity, inelasticity)
- Large differences observed in hadronic interaction models.
 - Different type of hadronization (string like or satistical decay)
 - Different energy spectra
- More data are necessary to constrain the model in relevant kinematic space.
 - Forward measurement with particle identification
 - → Light ion beam (p-O, O-O)

Core-Corona effect in Air Showers

At mid-rapidity the particles come from the core or the corona

$$N_i = \omega_{\rm core} \, N_i^{\rm core} + \left(1 - \omega_{\rm core}\right) N_i^{\rm corona}$$

$$\omega_{\rm core}(E_{\rm lab}) = f_{\omega} \underbrace{F(E_{\rm lab}; E_{\rm th}, E_{\rm scale})}_{F(E_{\rm lab}; E_{\rm th}, E_{\rm scale})}$$

$$\frac{\log_{10}(E_{\rm lab}/E_{\rm th})}{\log_{10}(E_{\rm scale}/E_{\rm th})} \text{ for } E_{\rm lab} > E_{\rm th}$$

$$E_{\rm th} = 100 \, {\rm GeV}$$

The particle ratios are modified from the corona to the core taking different values of f_{ω} and $E_{
m scale}$

Baur et al.: 1902.09265 [hep-ph]

Core-Corona effect in Air Showers

Forward Spectra

Introduction

Core-Corona effect in Air Showers

Baur et al.: 1902.09265 [hep-ph]

Preliminary Version with Minimum Constraints

Forward Spectra

Introduction

Results for Air Showers (1)

- Small change for <X_{max}> as expected
- Significant change of $\langle X^{\mu}_{max} \rangle$
- Comparison with extreme case (almost only grand canonical hadron.)
 - maximum effect using this approach
 - not compatible with accelerator data

Large change of the number of muons at ground

Different slope as expected from the change in a ರ 0.55 α =N $_{\gamma}$ N $_{all}$ π + Air 10 5 GeV 0.5 0.035 **EPOS QGP QGSJETII-04** 0.45 Fe SIBYLL 2.3c 0.4 0.35 0.03 $(GeV^{-0.925})$ 0.3 0.25 -20% 0.2 0.025 0.15 10 10 $m N_{\mu}/E^{0.925}$ X 0.02 1.4 2.1 MOD/QGSJETII-04 E=10¹⁹eV **EPOS LHC** p 1.2 **EPOS QGP QGSJETII-04** 0.015 **EPOS LHC EPOS QGP** 1 SIBYLL 2.3c **EPOS Extreme** 8.0 10¹⁸ **10**¹⁹ 10²⁰ 10¹⁵ 10¹⁷ 10²¹ 10¹⁶ 10

(eV)

Energy

μ energy (GeV)

Forward Production in p-p

Simulations at 10¹⁷eV lab energy ~ LHC cms energy

Introduction

Forward Production in p-p

Simulations at 10¹⁷eV lab energy ~ LHC cms energy

Introduction

Forward Production in p-Air

Simulations at 10¹⁷eV lab energy ~ LHC cms energy

Forward Production in p-Air

Simulations at 10¹⁷eV lab energy ~ LHC cms energy

- very similar elongation rate (slope) for all models
- same mass composition evolution
- still differences in absolute values
 - +/- 20g/cm² is a realistic uncertainty band

Model Consistency using Electromagnetic Component

Study by Pierre Auger Collaboration

std deviation of InA allows to test model consistency.

 $10^{15} 10^{16} 10^{17} 10^{18} 10^{19} \quad 10^{15} 10^{16} 10^{17} 10^{18} 10^{19} \quad 10^{15} 10^{16} 10^{17} 10^{18} 10^{19}$

E/eV

Air Showers

^a SIBYLL-2.3c, not SIBYLL-2.3

^b not energy-scale corrected

NA61 Pion-Carbon Data

New data from NA61: wrong old data interpretation

- over production of anti-baryons in EPOS LHC : problem in air showers
- confirmation that QGSJETII-04 underestimate forward baryon production

Baryons in Pion Interactions

Data from NA49 (Gabor Veres PhD): full picture

Forward Spectra

Comparison with LHCf

- → LHCf favor not too soft photon spectra (EPOS LHC, SIBYLL 2.3): deep X_{max}
- No model compatible with all LHCf measurements: room for improvements!

Can p-Pb data be used to mimic light ion (Air) interactions?

Forward Spectra

Muon and Neutrino Fluxes

Low energy inclusive muon flux compared to predictions from different models (MCEq)

- Reasonable agreement below 100 GeV.
- Uncertainties due to primary CR flux/mass choice (H3a)

Inclusive Spectra and First Interaction

For inclusive spectra, particles from first interaction dominate

Forward Spectra

Air Showers

- Muons above 100 GeV and neutrinos very sensitive to kaon production
 - Kaon production increased by up to 20% in EPOS QGP
- Collective hadronization will change inclusive fluxes
 - Additional constrain to take into account!

Pion Interactions

MPD measurement helped to understand the importance of pion interactions (lack of accelerator data until NA61) and baryon effect on propagation

- low pion elasticity in DPMJETIII
- high pion elasticity (diffraction) in EPOS and Sibyll driven by LHC data (and high baryon number (Ostapchenko et al. Phys.Rev. D93 (2016) no.5, 051501))
- diffraction with pion projectile or proton projectile are different

Forward Spectra

Ultra High Energy Showers

Pierre Auger Observatory direct measurements

- direct muon counting for very inclined showers (>60°) by comparing to simulated muon maps (geometry and geomagnetic field effects) at high energy
- indirect using hybrid measurement
- direct using burred detectors (AMIGA) at low energy

Muons at Ground

Air Showers

- Muon production depends on all int. energies
- Muon production dominated by pion interactions (LHC indirectly important)
- Resonance and baryon production important
- Post-LHC Models ~ agrees on numbers but with different production height (MPD) and spectra

Muon Production Depth

Baryons in Pion Interactions

Data from NA49 (Gabor Veres PhD): full picture

valence quark effect visible

Introduction

- large part (half?) of forward baryon production coming from the target!
 - possible new source of low energy muons with small effect on MPD

Forward Spectra

Mass Dependent Inconsistencies

Test using KASCADE and KASCADE-Grande

inconsistency must larger for heavy component!

Forward Spectra

Nuclear Interactions

Main source of uncertainty in extrapolation:

- very different approaches
- limited available data set
- limited models capabilities

Sibyll (light ion only)

- corrected Glauber for pA
- superposition model for AA (A x pA)

QGSJETII (all masses but not all data)

- Scattering configuration based on A projectiles and A targets
- Nuclear effect due to multi-leg Pomerons

DPMJETIII (all masses)

- Glauber
- limited collective effects treatment.

EPOS (all masses)

- Scattering configuration based on A projectiles and A targets
- screening corrections depend on nuclei
- final state interactions (core-corona approach and collective hadronization with flow for core)

Ultra-High Energy Hadronic Model Predictions A-Air

Forward Spectra

- Modified air shower simulations with air target replaced by hydrogen
 - for interactions only (no change in density)
 - no nuclear effect
- \bullet Relative predictions for $< X_{max} >$ and number of muons are very different
 - smaller difference but QGSJETII-04 larger than EPOS LHC!

Forward Spectra

Uncertainties in X_{max}

Introduction

- photon energy spectra
- elasticity (for 2^d interaction)
- extrapolation to nuclear interactions
- Use directly energy spectra from first interaction
 - which energy is important?

Air Showers

PAO vs TA

From Roberto Aloiso UHECR talk (2015 working group)

Forward Spectra

Baryons in Pion-Carbon

- Very few data for baryon production from meson projectile, but for all:
 - strong baryon acceleration (probability ~20% per string end)
 - proton/antiproton asymmetry (valence quark effect)
 - target mass dependence
- New data set from NA49 (G. Veres' PhD)
 - \blacksquare test π^+ and π^- interactions and productions at 158 GeV with C and Pb target
 - \bullet confirm large forward proton production in $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$ interactions but not for antiprotons
 - forward protons in pion interactions are due to strong baryon stopping (nucleons from the target are accelerated in projectile direction)
 - strong effect only at low energy
 - EPOS overestimate forward baryon production at high energy

Simplified Shower Development

Using generalized Heitler model and superposition model :

had
$$\lambda_{ine}$$
 $n=1$
had $n=1$
had $n=2$

$$\vdots$$

$$N_{tot} = N_{had} + N_{em}$$

$$X_{max} \sim \lambda_e \ln[(1-k).E_0/(2.N_{tot}.A)] + \lambda_{ine}$$

- Model independent parameters :
 - \blacksquare E₀ = primary energy
 - A = primary mass
 - $\lambda_{p} = \text{electromagnetic mean free path}$
- Model dependent parameters :
 - k = elasticity

 - λ_{ine} = hadronic mean free path (cross section)

Toy Model for Electromagnetic Cascade

Primary particle: photon/electron

Heitler toy model:

2 particles produced with equal energy

 2^n particles after n interactions

$$n = X/\lambda_e$$

$$N(X) = 2^n = 2^{X/\lambda_e}$$

$$E(X) = E_0/2^{X/\lambda_e}$$

Assumption: shower maximum reached if $E(X) = \underline{E_c}$ (critical energy)

$$N_{max} = E_0/E_c$$
 $X_{max} \sim \lambda_e \ln(E_0/E_c)$

Toy Model for Hadronic Cascade

Primary particle: hadron

N_{had} particles can produce muons after *n* interactions

$$N(n)=N_{had}^n$$

 N_{tot}^{n} particles share E_0 after ninteractions

$$E(n) = E_0 / N_{tot}^n$$

Assumption: particle decay to muon when $E = E_{dec}$ (critical energy) after n_{max} generations

$$E_{dec} = E_0 / N_{tot}^{n_{max}} \qquad n_{max} = \frac{\ln(E_0 / E_{dec})}{\ln(N_{tot})} \qquad \ln(N_{\mu}) = \ln(N(n_{max})) = n_{max} \ln(N_{had})$$

Hadronic Interaction Models in CORSIKA

EAS with Re-tuned CR Models : X_{max}

After LHC:

- Sibyll shifted by ~+20 g/cm²
- \rightarrow for other models about the same $<X_{max}>$ value at $10^{18}\,eV$ but
 - slope increased for QGSJETII
 - slope decreased for EPOS

Multiplicity

- Field theory: scattering via the exchange of an excited field
 - parton, hadron, quasi-particle = Reggeon or Pomeron (vacuum excitation)

Air Showers

- Gribov-Regge Theory and cutting rules: multiple scattering associated to cross-section via sum of inelastic states
 - different ways of dealing with energy conservation
- sum all scatterings with full energy to get cross-section
- get number of elementary scattering without energy sharing (Poissonian distribution)
- share energy between scattering afterwards

- cross-section calculated with energy sharing
- get the number of scattering taking into account energy conservation
- consistent approach

Does energy sharing order matter?

- Field theory: scattering via the exchange of an excited field
 - parton, hadron, quasi-particle = Reggeon or Pomeron (vacuum excitation)
- Gribov-Regge Theory and cutting rules: multiple scattering associated to cross-section via sum of inelastic states
 - different ways of dealing with energy conservation

Does the minijet definition matter?

- Field theory: scattering via the exchange of an excited field
 - parton, hadron, quasi-particle = Reggeon or Pomeron (vacuum excitation)
- QCD based theory so at high energy, perturbative QCD can be used to build the field amplitude (amplitude used for the cross-section)
 - all minijet based (parton cascade and pQCD born process hadronized using string fragmentation) but different definitions

Ultra-High Energy Hadronic Model Predictions p-Air

Ultra-High Energy Hadronic Model Predictions p-Air

Ultra-High Energy Hadronic Model Predictions π -Air

Forward Spectra

Extensive Air Shower

From R. Ulrich (KIT)

$$A + air \rightarrow \text{hadrons}$$

 $p + air \rightarrow \text{hadrons}$ hadronic physics
 $\pi + air \rightarrow \text{hadrons}$
initial γ from π^0 decay

$$e^{\pm}
ightarrow e^{\pm} + \gamma \qquad {
m well \ known} \ \gamma
ightarrow e^{+} + e^{-} \qquad {
m QED}$$

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu_{\mu}}$$

Cascade of particle in Earth's atmosphere

Number of particles at maximum

- → 99,88% of electromagnetic (EM) particles
- → 0.1% of muons
- 0.02% hadrons Energy
- from 100% hadronic to 90% in EM + 10% in muons at ground (vertical)

Diffraction measurements

- TOTEM and CMS diffraction measurement not fully consistent
- Tests by S. Ostapchenko using QGSJETII-04 (PRD89 (2014) no.7, 074009)
 - SD+ option compatible with CMS
 - SD- option compatible with TOTEM

M_X range	< 3.4 GeV	3.4 - 1100 GeV	3.4 - 7 GeV	7 - 350 GeV	350 - 1100 GeV
TOTEM [13, 24]	2.62 ± 2.17	6.5 ± 1.3	$\simeq 1.8$	$\simeq 3.3$	$\simeq 1.4$
QGSJET-II-04	3.9	7.2	1.9	3.9	1.5
${\rm option}\;{\rm SD}+$	3.2	8.2	1.8	4.7	1.7
option SD-	2.6	7.2	1.6	3.9	1.7

→ difference of ~10 g/cm² between the 2 options

