

Long-lived Particles at the High-Energy Intensity Frontier

Yu-Dai Tsai, Fermilab/U Chicago

[1] Dark photon, inelastic dark matter, muon g-2, and LongQuest (1908.07525)

[2] Millicharged Particles (MCPs) in Neutrino Experiments (1806.03310, PRL '19)

[3] The FerMINI Experiment (1812.03998, PRD '19)

Proton Fixed-Target Experiments: Decay vs Scattering Studies

My other interesting related works:

[4] Cosmic-ray Beam-Dump: MCPs in Neutrino Observatories (2002.11732, NEW)

[5] Light Scalar & Dark Photon at BoreXino & LSND, 1706.00424, PLB '18

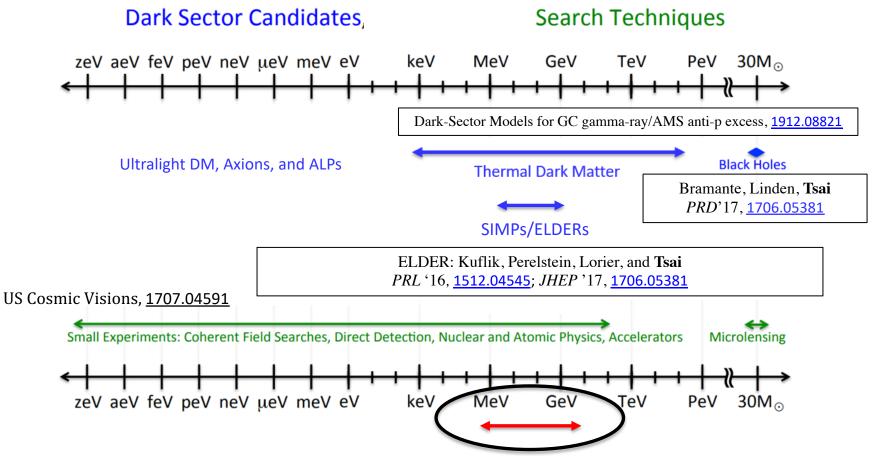
(proton-charge radius anomaly) w/ Pospelov

[6] Dipole Portal Heavy Neutral Lepton, <u>1803.03262</u>, PRD '18

(LSND/MiniBooNE anomalies) w/ Magill, Plestid, Pospelov

[7] Dark Neutrino at Scattering Exps: CHARM-II & MINERvA, 1812.08768, PRL '19

(MiniBooNE Anomaly) w/ Argüelles, Hostert


Email: <u>ytsai@fnal.gov</u>; arXiv: <u>https://arxiv.org/a/tsai_y_1.html</u>

Yu-Dai Tsai, Fermilab, 2020

Outline

- Why Long-Lived Particles in MeV few GeV Mass Range? (see Gordan's talk for more) Why proton fixed-target (FT) experiments?
- **Decay** Experiments (CHARM, NuCal, NA62, DarkQuest, etc)
- Interesting Decay studies and the LongQuest proposal
- Scattering Experiments and the FerMINI proposal
- Other new opportunities: DUNE ND complex, SHiP, Cosmic-Ray, Neutrino Observatories

Exploration of Dark Matter & Mediator

- Resonant SIDM w/ Hitoshi+; Kinetic Decoupling DM w/. Tracy+ (in prep.)
- Astrophysical/cosmological observations: important to reveal the actual story of dark matter (DM).
- Why fixed-target experiments? And why MeV GeV+?

MeV – GeV+ dark sectors? Signals of discoveries grow from anomalies Maybe nature is telling us something so we don't have to search in the dark? (or probably systematics?)

Yu-Dai Tsai, Fermilab, 2020

Some anomalies involving MeV - GeV+ Explanations

- Muon g-2 anomaly (muon g-2 col., he-pex/0602035)
- LSND & MiniBooNE anomaly (LSND PRL '95, MiniBooNE PRL '07)
- **EDGES result** (EDGES col, nature '08)
- **KOTO anomaly** (кото, каом2019)
- Proton charge radius anomaly (Pohl, Nature, '10)
- **Beryllium anomaly** (Krasznahorkay, PRL '15)

Below ~ MeV there are also **strong astrophysical/cosmological bounds** that are hard to avoid even with very relaxed assumptions

Advantages of Proton Fixed-Target Exp.

Yu-Dai Tsai, Fermilab, 2020

Proton FT (& Neutrino) Experiments

- High statistics, e.g. LSND has 10^{23} Protons on Target (POT)
- Neutrinos are **dark-sector particles**.
- Relatively high-energy proton beams on targets:
 O(100 400) GeV (I will compare Fermilab/CERN facilities)
- Shielded/underground: lower background
- Many of them existing and many to come:
 strength in numbers
- Produce these particles with less assumptions

Not all probes are with equal assumptions

Assumptions

Or, how likely is it that theorists would be able to argue our ways around them

Accelerator-based: Collider, **Fixed-Target Experiments** Some other ground-based experiments

techinical

Astrophysical productions (not from ambient DM): energy loss/cooling, etc: Rely on modeling/observations of (extreme/complicated/rare) systems (SN1987A & neutron-star mergers)

Dark matter direct/indirect detection: abundance, velocity distribution, etc

Cosmological observations: cosmological history, species, etc

Zdifferent

The proton-beam fixed-target facilities

natural habitats for signals of weakly interacting / long-lived / dark-sector particles

Yu-Dai Tsai, Fermilab, 2020

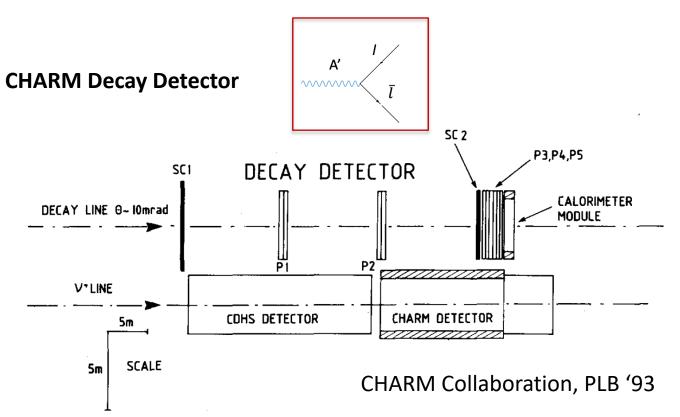
Facilities

- Los Alamos National Lab
- LANSCE beam (LSND): 10^{23} POT total (beam: 800 MeV), King of POT
- Fermilab (undergoing a Proton Improvement Plan, PIP):
- Booster Beam (BNB): ~ 10^{20} POT/yr (8 GeV), now
- NuMI beam: 1 4 x 10^{20} POT/yr (120 GeV), now
- LBNF beam: $\sim 10^{21}$ POT/yr (120 GeV), future
- CERN SPS beam:
- NA62: up to 3 x 10^{18} POT/yr (400 GeV), now
- SHiP: up to 10^{19} POT/yr (400 GeV), future
- **CERN LHC:** FASER, 10^{16} POT/yr, much higher energy, future

Proton FT Experiment: Decay vs Scattering

Yu-Dai Tsai, Fermilab, 2020

Decay Experiments/Detectors

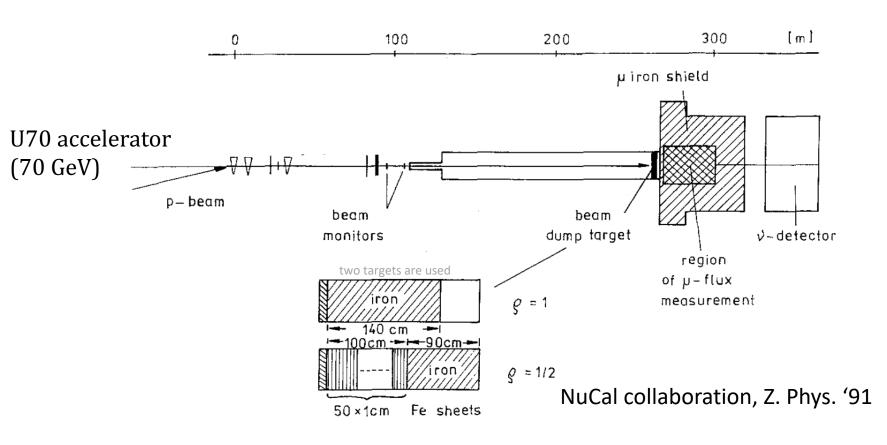

Including CHARM decay detector (DD), NuCAL (beam-dump mode), NA62, SeaQuest/DarkQuest (see, arXiv:1908.07525, for a detailed comparison)

• Experiments optimized to study **decaying particles**, or simply two charged particle final states, e.g. from Drell-Yan (SeaQuest)

General features:

- 1. Large decay volume
- 2. Low density (likely vacuumed), low background
- 3. Simple design thus relatively low cost (tracking planes + ECal)
- Often, there is external magnetic field (track separations/momentum reconstruction/filter-out soft SM radiation)
- 5. Usually studying long-lived particles (mediators, e.g., dark photons) 13

Decay Experiments/Detectors


Layout of the decay beam-dump experiment. SC1 and SC2 are scintillator planes. SC1 is used as a veto counter (sets the start of the decay region).

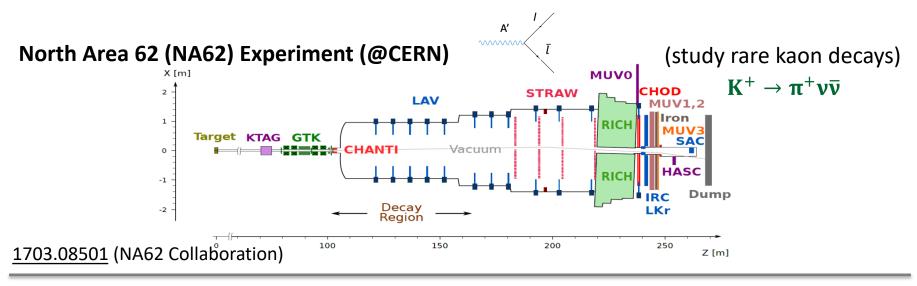
P1 to P5 are sets of instrumented planes (4 planes of proportional drift tubes) The estimated angular resolution for an electromagnetic shower is a few milliradians.

https://www.sciencedirect.com/science/article/abs/pii/0370269383902757?via%3Dihub

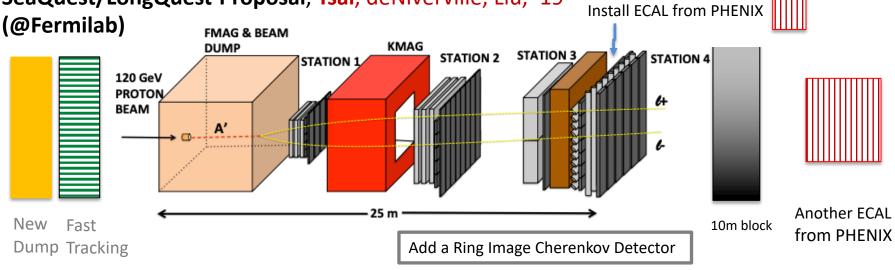
CHARM: CERN HAmburg Rome Moscow

v-calorimeter (NuCal) beam-dump experiment

To minimize the distance between target and detector,


the iron beam dump is located directly in front of the muon shield.

v-calorimeter (NuCal) detector details



- The neutrino detector is located at a distance of 64 m down-stream of the beam dump. The target part of the detector consists of 36 modules with the following structure per module
- a magnetized iron frame for the muon momentum measurement an aluminium plate (5 cm) as neutrino target and shower absorber which fills the inner free space of 3 x 3 m² of the frame
- x-y drift chamber planes of 4.5 x 4.5 m² for the track measurements in the target part and in the iron frame
- a CH2-1iquid scintillator target calorimeter of 10 counters, each with the transversal dimension of 5 x 0.3 m² and a thickness of 0.20 m, giving a sensitive plane of 5 x 3 m².

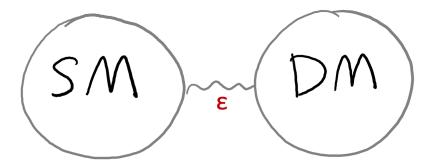
Decay Experiments/Detectors

SeaQuest/LongQuest-Proposal, Tsai, deNiverville, Liu, '19

Gardner, Holt, Tadepalli, <u>1509.00050</u>; Berlin, Gori, Schuster, Toro, <u>1804.00661</u>, DarkQuest

Legion of probes

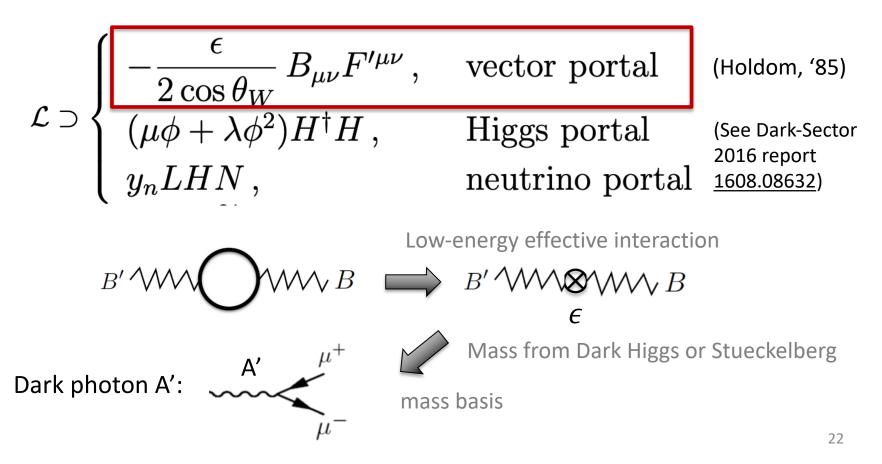
Experiment	Beam Energy	POT	$L_{\rm dist.}$	$L_{ m dec}$
CHARM	$400~{\rm GeV}$	2.4e18	480 m	$35 \mathrm{m}$
NuCal	$70 {\rm GeV}$	1.7e18	64 m	23 m
NA62	$400 { m ~GeV}$	*1.3e16/1e18	82 m	75 m
SQ/DQ	$120~{\rm GeV}$	*1.4e18/1e20	$5 \mathrm{m}$	*7 m
LongQuest	$120 { m ~GeV}$	*1e20	$5 \mathrm{m}$	*7/13 m

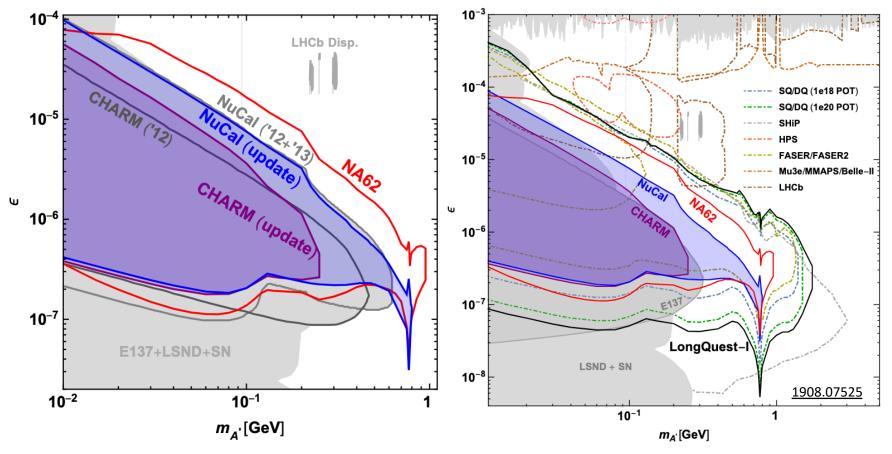

- *indicates not yet decided
- see, arXiv/1908.07525 (Tsai, deNiverville, Liu)
- L_{dist} is the distance between target & detector
- *L_{dec}* is the **length of the decay regime**

Yu-Dai Tsai, Fermilab, 2020 • Can add DUNE and SHiP once the designs are settled

Interesting LLPs for Decay Studies Applying the legion of probes!

Yu-Dai Tsai, Fermilab, 2020


The Rise of Dark Sector


- The Lee-Weinberg bound (77'): below ~ 2 GeV, DM freeze-out through weak-Interaction (e.g. through Z-boson) would overclose the Universe.
- Could consider ways to get around this but generally light DM **needs BSM mediators to freeze-out to proper relic abundance**.
- Mediator is needed for a proper freeze-out: the rise of "dark sector" (DM + mediators).

Renormalizable "Portals"

- Dark sectors can include mediator particles coupled to the SM via the following **renormalizable interactions.**
- High-Dim. axion portal is also popular

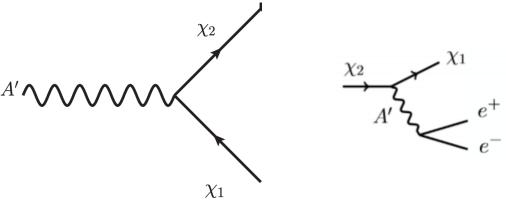
Legion of Probes on Dark Photon

Tsai, de Niverville, Liu, <u>1908.07525</u>

 Adding proton brem. production properly: resonant enhancement from mixing with ρ and ω mesons

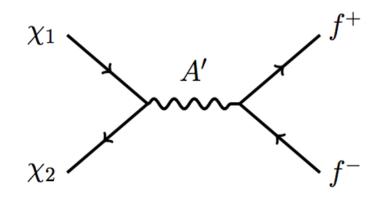
Improved Weizacher-Williams (Mat.-Fys. '39) (IWW) app. (Kim, Tsai '73)

• New Projections from NA62 & LongQuest,


for **compilation of probes / refs,** see, Ilten, Soreg, Williams, and Xue, 1801.04847

Inelastic Dark Matter

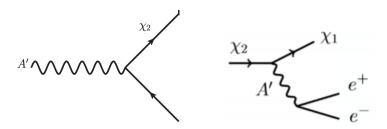
- One of the few viable MeV GeV thermal dark matter candidates
- A "thermal target" for DM searches
- Can explain g-2 and freeze-out to the right relic DM abundance
- Smith, Weiner, arXiv:0101138


$$\mathcal{L} \supset \sum_{i=1,2} ar{\chi}_i (i \partial \!\!\!/ - m_{\chi_i}) \chi_i - (g_D A'_\mu ar{\chi_1} \gamma^\mu \chi_2 + ext{h.c.}).$$

$$\Delta \equiv \frac{m_2 - m_1}{m_1}$$
, $g_D \equiv \sqrt{4\pi\alpha_D}$, $m_{A'} > m_{x1} + m_{x2}$.

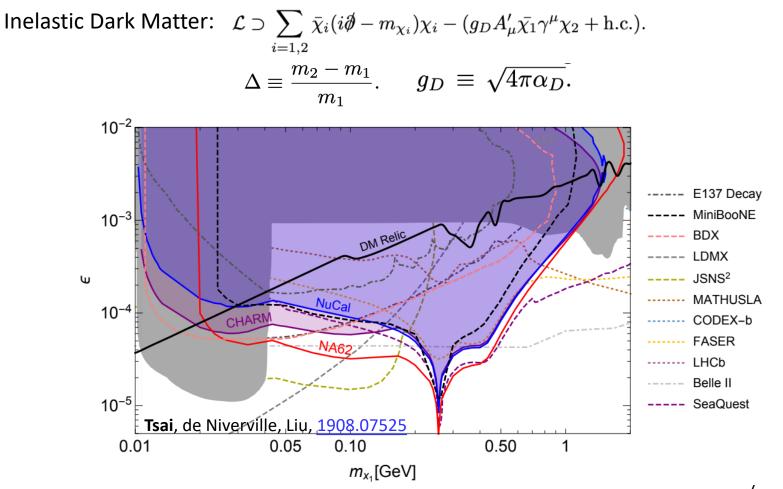
1703.06881 (Izaguirre, Kahn, Krnjaic, Moschella)

Inelastic Dark Matter (iDM)


- Co-annihilation freeze out to right relic abundance but avoid CMB constraints
 - Considered thermal targets for newly proposed experiments
 - <u>1703.06881</u> (Izaguirre, Kahn, Krnjaic, & Moschella)
 - Collider studies: 1508.03050 (Izaguirre, Krnjaic, Shuve)
 - LHC lifetime frontier: 1810.01879 (Berlin, Kling)
 - Fixed-target probes: next page

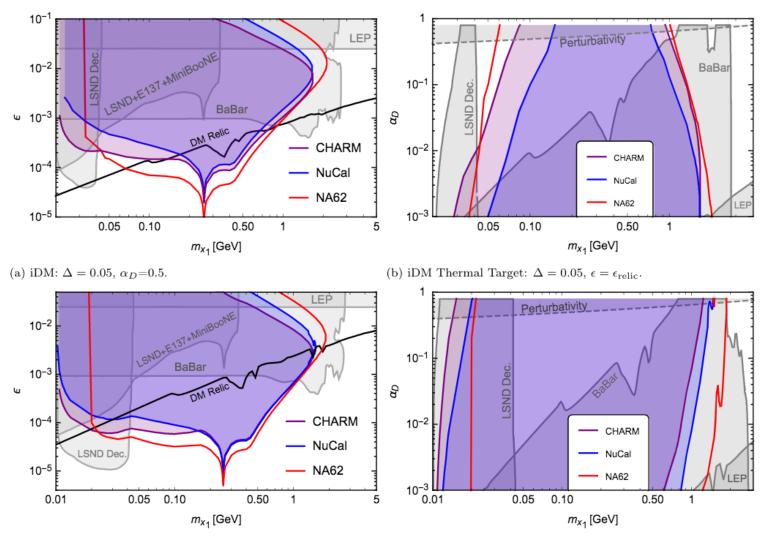
iDM in Fixed-Target

Fixed target:


- 1703.06881 (FT: Izaguirre, Kahn, Krnjaic, Moschella),
- 1804.00661 (SeaQuest: Berlin, Gori, Schuster, Toro)
- 1902.05075 (g-2: Mohlabeng)
- 1908.07525 (Strong bounds: Tsai, de Niverville, Liu):
 - -> CHARM, NuCal, NA62, LongQuest,

-> DUNE (preliminary)

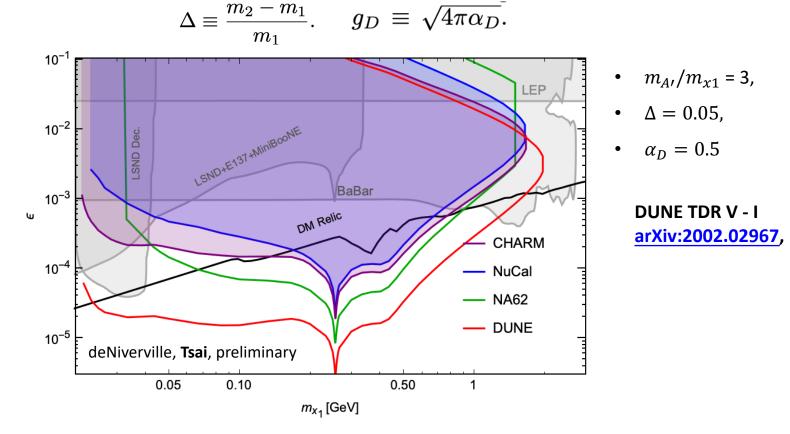
1703.06881 (Izaguirre, Kahn, Krnjaic, Moschella),


New Bounds on Inelastic Dark Matter

(e) Compilation of relevant constraints and sensitivity projections for iDM with $\alpha_D = 0.1$ and $\Delta = 0.1$. $m_{AI}/m_{\chi 1} = 3$.

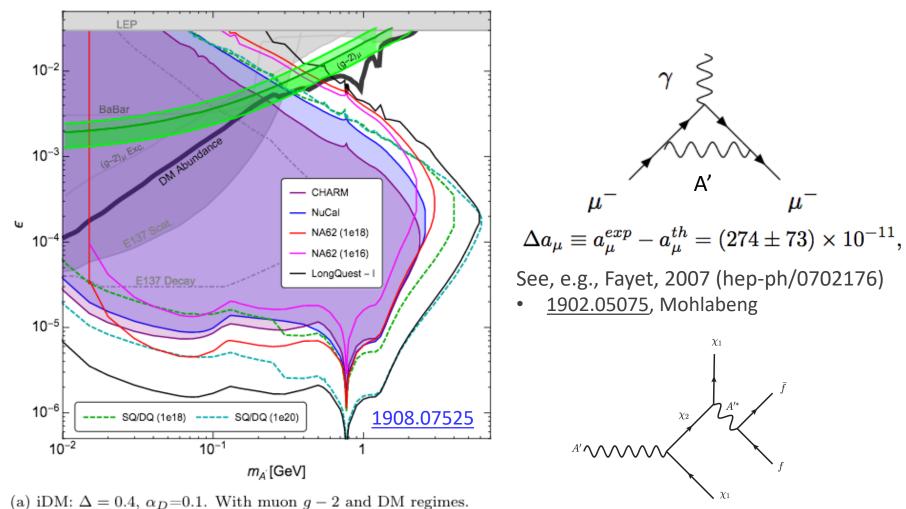
Tsai, de Niverville, Liu, <u>1908.07525</u> + reference in previous slides See, Duerr, Ferber, Hearty, Kahlhoefer, Schmidt-Hoberg, Tunney, 1911.03176, for Belle II update

Results: iDM Thermal Target (small mass-splitting)

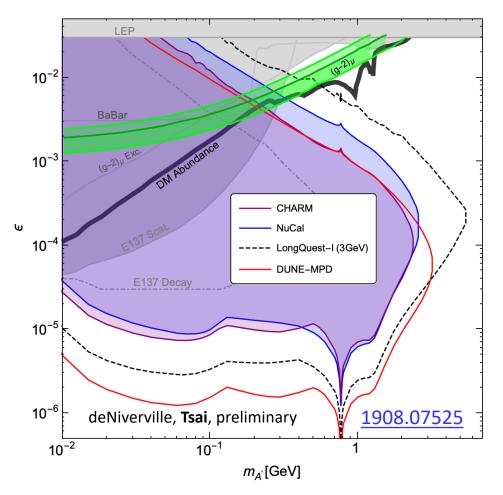

(c) iDM: $\Delta = 0.1, \alpha_D = 0.1$.

(d) iDM Thermal Target: iDM $\Delta = 0.1$, $\epsilon = \epsilon_{\text{relic}}$.

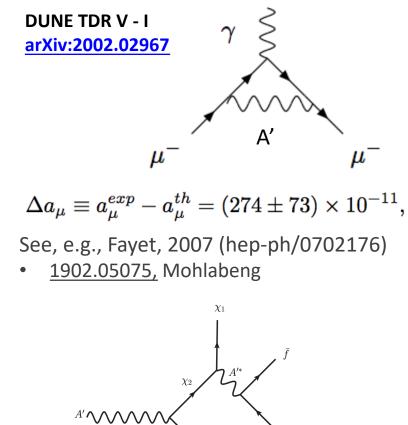
1908.07525 (Tsai, de Niverville, Liu)


New Bounds on Inelastic Dark Matter

Inelastic Dark Matter: $\mathcal{L} \supset \sum_{i=1,2} \bar{\chi}_i (i\partial \!\!\!/ - m_{\chi_i}) \chi_i - (g_D A'_\mu \bar{\chi_1} \gamma^\mu \chi_2 + \mathrm{h.c.}).$


DUNE preliminary results by deNiverville & Tsai,

Inelastic Dark Matter & Muon g-2 explainer



 $m_{A'}/m_{x1} = 3.$ • 1908.

Inelastic Dark Matter & Muon g-2 explainer

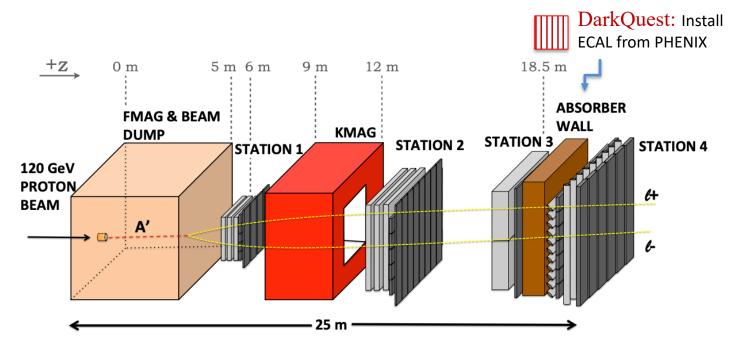
(a) iDM: $\Delta = 0.4$, $\alpha_D = 0.1$. With muon g - 2 and DM regimes. $m_{A\prime}/m_{\chi 1} = 3$.

<u>1908.07525,</u>**Tsai**, deNiverville, Liuz ₃₁

 χ_1

Beyond Simple Dark-Sector Models

I am currently looking into


- Cosmology motivated models
- New Strongly Self-Interaction DM (models motivated by dark QCD)

New results in preparation!

Details of LongQuest: A Multi-Purpose Detector

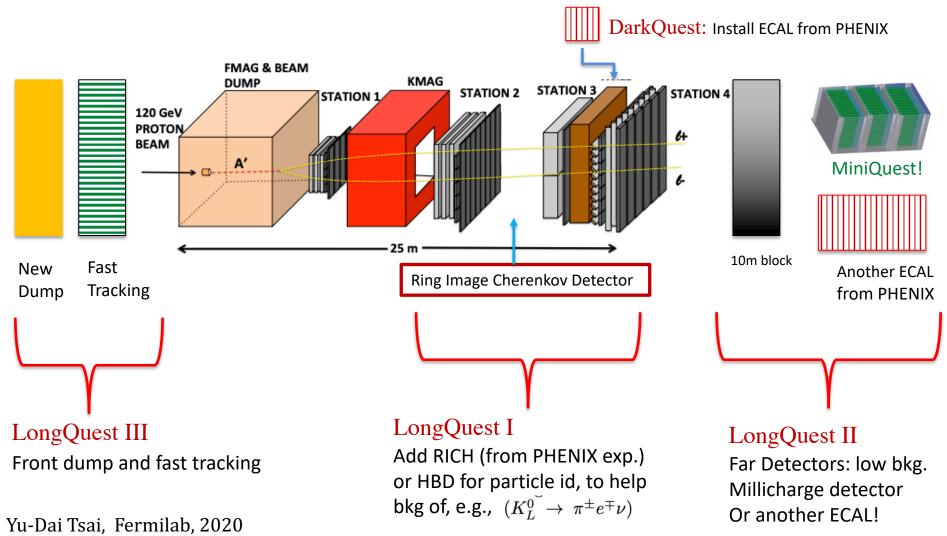
Yu-Dai Tsai, Fermilab, 2020

SeaQuest/DarkQuest

arXiv:1509.00050 (Gardner, Holt, Tadepalli); arXiv:1804.00661 (Berlin, Gori, Schuster, Toro)

Nhan Tran (Fermilab) was rewarded Fermilab LDRD funding (w/ Krnjaic & Toups) and is leading detailed SeaQuest/DarkQuest study + snowmass white paper.

We are looking into long-term plan: arXiv:1908.07525 (Tsai, de Niverville, Liu)


LongQuest (I-III)

- A search for long-lived particles with an improved decay detector (I), additional long based-line detectors (II), and possibly new dump + tracking (III) using SeaQuest facility.
- Working on a pheno paper with Ming Liu, Kun Liu, and Patrick de Niverville.

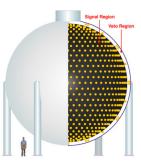
LongQuest: Three Stage Retool of SpinQuest, as Dedicated Long-Lived Particle Experiment

Scattering Experiments

Yu-Dai Tsai, Fermilab, 2020

Scattering Experiments/Detectors

MiniBooNE, SBND, MicroBooNE, MINERvA, DUNE, etc

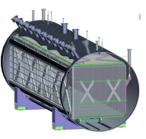

• Primary goals to study neutrino scattering and/or neutrino oscillation

Features (comparing to decay detector):

- 1. higher density
- 2. complicated design compared to the decaying detector.
- 3. Smaller fiducial volume (for near-beam detectors); cost more.
- 4. Usually studying stable particles (neutrino, dark matter, etc)

Scattering Detectors

MiniBooNE Detector

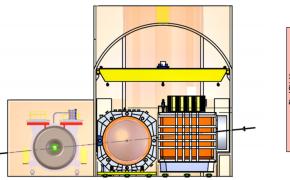


arXiv:0806.4201 MiniBooNE collaboration

 χ

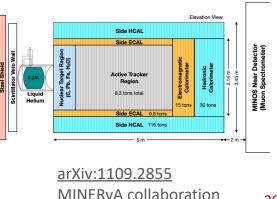
 $\bar{\chi}$

MicroBooNE Detector



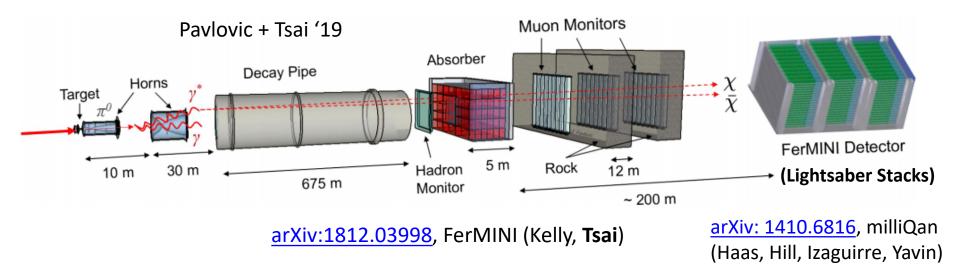
arXiv:1612.05824 MicroBooNE collaboration

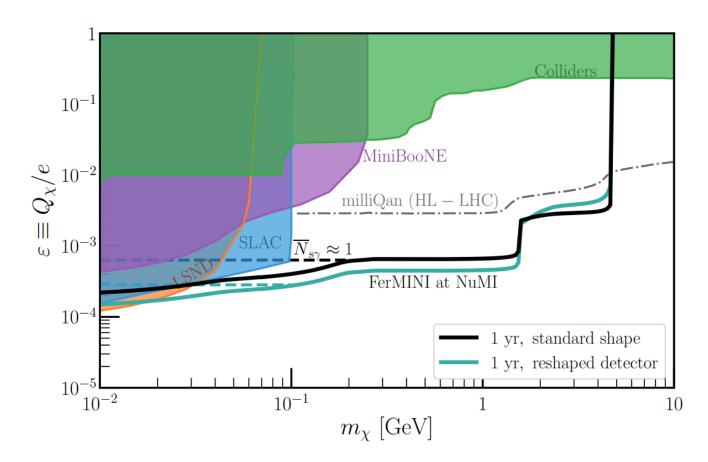
Other beams:


- BNB
- LBNF (future)

DUNE Near Detector

arXiv:2002.02967, DUNE TDR V - I

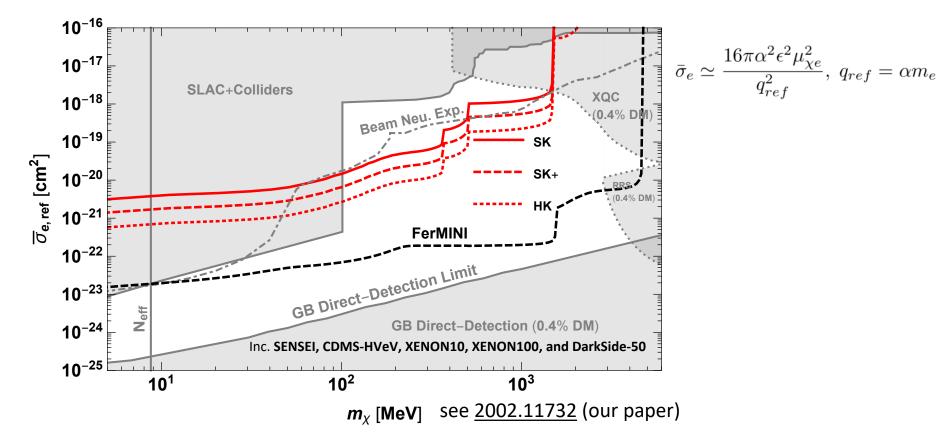

MINERvA Detector


39

FerMINI: Fixed-Target Millicharged Particle Search

 specialized "scattering experiment" to search for millicharged particles using stacks of scintillators studying triple/quadruple coincident signature

FerMINI @ MINOS


Yu-Dai Tsai, Fermilab

Different epsilon now, $\varepsilon = Q/e$

Now it's literally fraction of the charge!

FerMINI Probe of Millicharged SIDM

MCP / LDM with ultralight dark photon mediators, all curves except FerMINI are from arXiv:1905.06348

Yu-Dai Tsai, Fermilab

- Here we plot the electron-scattering Millicharged SIDM see 1905.06348 (Emken, Essig, Kouvaris, Sholapurkar)
- FerMINI can help close the Millicharged SIDM window!

FerMINI Collaboration (BRN proposal)

Chris Hill OSU

Andy Haas NYU

Jim Hirschauer Fermilab

David Miller U Chicago

David Stuart UCSB

Zarko Pavlovic Fermilab

Yu-Dai Tsai Fermilab/U.Chicago

Cindy Joe Fermilab

Ryan Heller Fermilab

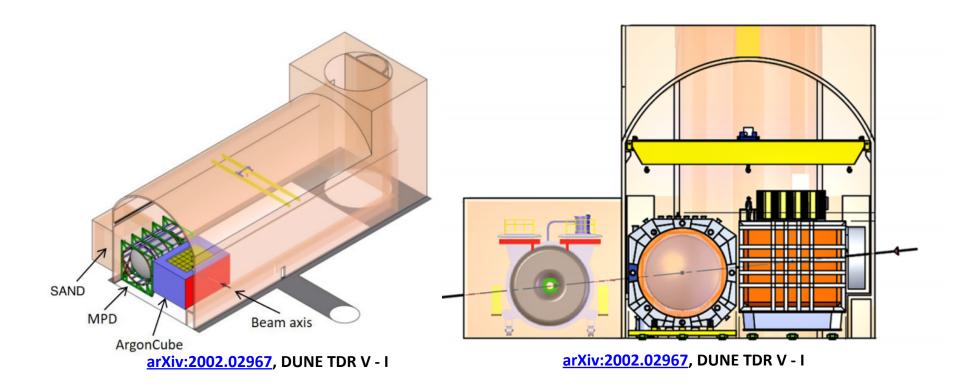
Maxim Pospelov Minnesota / Perimeter

Ryan Plestid McMaster

Albert de Roeck CERN

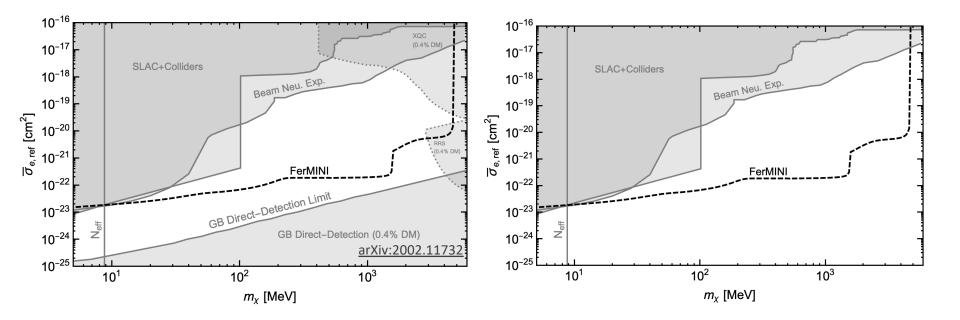
Joe Bramante Queen's U

Bithika Jain ICTP-SAIFR


Looking Ahead

- Exploring Energy Frontier of the Intensity Frontier (complementary to and before HL-LHC upgrade)
- Cosmology-driven models: relaxions, baryogenesis models
- other motivated models: quirks, KOTO-related models
- Near-future (and almost free) opportunity
 (NuMI Facility, SBN program, DUNE Near Detector, etc.)
- Other new low-cost alternatives/proposals (~ \$1M) to probe exotic stable particles (FerMINI) and new forces (LongQuest)
- Dark sectors in neutrino observatories

Thank You!


Yu-Dai Tsai, Fermilab, '20

DUNE Near Detector Complex

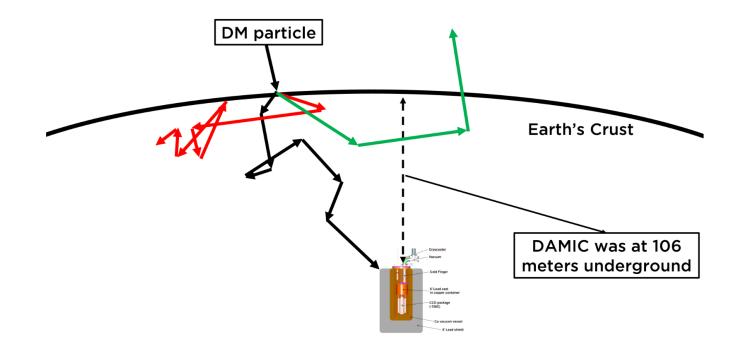
- <u>arXiv:2002.02967</u>, DUNE TDR V I
- 1912.07622 (Berryman, Gouvêa, Fox, Kayser, Kelly, Raaf)
- New scattering + decay studies (De Niverville, De Roeck, Petrillo, Tsai, Tsai, in preparation)

Example: Constraints on Millicharged Dark Matter

Also Consider ambient dark matter

Produce dark particles in collisions

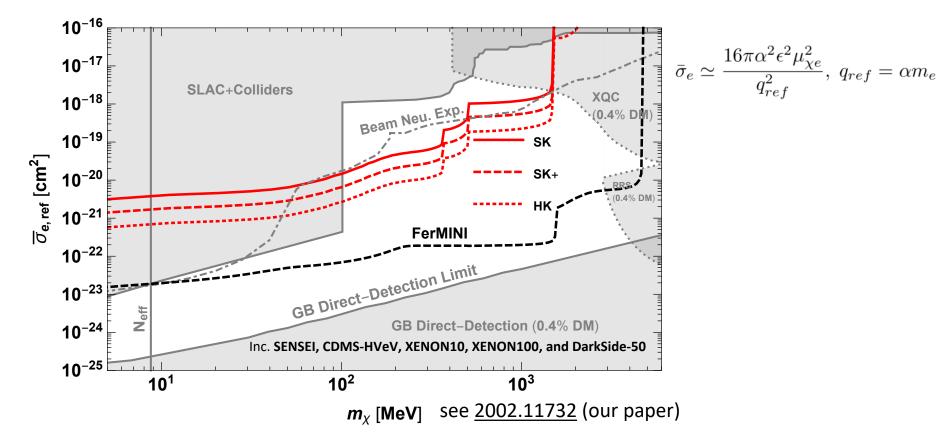
Same mass and interaction strength.


Different assumptions

Details of these figures & references will be explained and discussed later

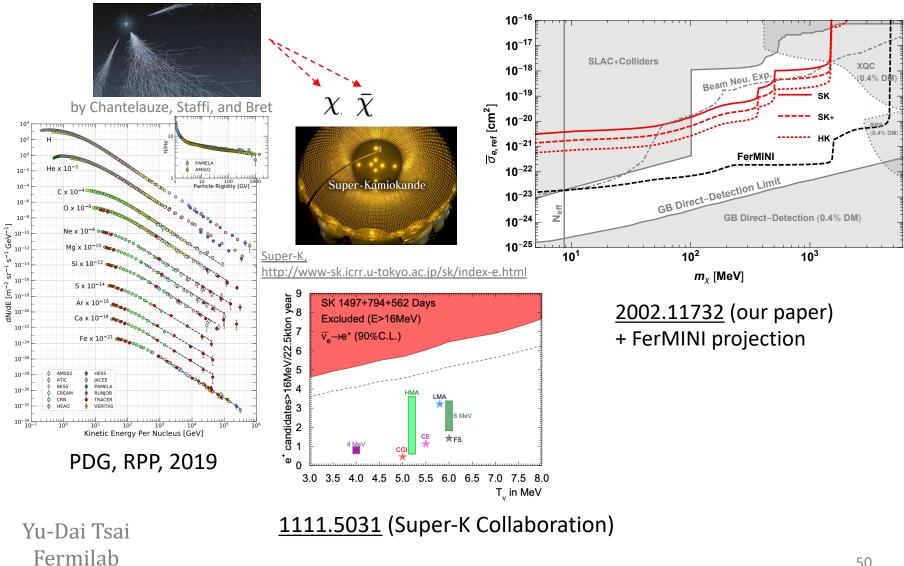
Yu-Dai Tsai, Fermilab, 2020

Strongly Interacting Dark Matter


DM-SM Interaction too strong that attenuation stop the particles from reach the direct detection detector

DMATIS (Dark Matter ATtenuation Importance Sampling), Mahdawi & Farrar '17

FerMINI Probe of Millicharged SIDM


MCP / LDM with ultralight dark photon mediators, all curves except FerMINI are from arXiv:1905.06348

Yu-Dai Tsai, Fermilab

- Here we plot the electron-scattering Millicharged SIDM see 1905.06348 (Emken, Essig, Kouvaris, Sholapurkar)
- FerMINI can help close the Millicharged SIDM window!

MCP in Neutrino Observatories

Reviving MDM for EDGES

Liu, Outmezguine, Redigolo, Volansky, '19

Advantages of FerMINI: Timeliness, Low-cost, Movable, Tested, Easy to Implement, ...

- 1. LHC entering long shutdown
- NuMI operating, shutting down in 5 years (DO IT NOW! Fermilab! USA!)
- 3. Broadening the physics case for fixed-target facilities
- 4. **DUNE near detector design** still underway
- 5. Can develop at NuMI/MINOS and then move to DUNE
- 6. Sensitivity better than milliQan for MCP up to 5 GeV and don't have to wait for HL-LHC
- 7. Synergy between dark matter, neutrino, and collider community.
 (contact <u>ytsai@fnal.gov</u>)