
Preliminary evaluation of Spack as a new backend for

LCG releases

I. Razumov

LiM Meeting, 3 December 2019

I. Razumov Spack 3-12-2019 1 / 5



Introduction

What is Spack?

Spack is a package management tool designed to support multiple versions
and con�gurations of software on a wide variety of platforms and
environments. It was designed for large supercomputing centers, where many
users and application teams share common installations of software on clusters
with exotic architectures, using libraries that do not have a standard ABI.
Spack is non-destructive: installing a new version does not break existing
installations, so many con�gurations can coexist on the same system.

Why Spack?

Is recommended by HSF Packaging group

Experiments (ATLAS and LHCb) has expressed interest in evaluating
Spack during CHEP'19 conference held in Adelaide, South Australia, over
Monday-Friday 4-8 November 2019.

Already used by FCCa, ALICEb

ato build their software on top of existing LCG release
bby a small group inside ALICE

I. Razumov Spack 3-12-2019 2 / 5



Introduction

What is Spack?

Spack is a package management tool designed to support multiple versions
and con�gurations of software on a wide variety of platforms and
environments. It was designed for large supercomputing centers, where many
users and application teams share common installations of software on clusters
with exotic architectures, using libraries that do not have a standard ABI.
Spack is non-destructive: installing a new version does not break existing
installations, so many con�gurations can coexist on the same system.

Why Spack?

Is recommended by HSF Packaging group

Experiments (ATLAS and LHCb) has expressed interest in evaluating
Spack during CHEP'19 conference held in Adelaide, South Australia, over
Monday-Friday 4-8 November 2019.

Already used by FCCa, ALICEb

ato build their software on top of existing LCG release
bby a small group inside ALICE

I. Razumov Spack 3-12-2019 2 / 5



Introduction

What is Spack?

Spack is a package management tool designed to support multiple versions
and con�gurations of software on a wide variety of platforms and
environments. It was designed for large supercomputing centers, where many
users and application teams share common installations of software on clusters
with exotic architectures, using libraries that do not have a standard ABI.
Spack is non-destructive: installing a new version does not break existing
installations, so many con�gurations can coexist on the same system.

Why Spack?

Is recommended by HSF Packaging group

Experiments (ATLAS and LHCb) has expressed interest in evaluating
Spack during CHEP'19 conference held in Adelaide, South Australia, over
Monday-Friday 4-8 November 2019.

Already used by FCCa, ALICEb

ato build their software on top of existing LCG release
bby a small group inside ALICE

I. Razumov Spack 3-12-2019 2 / 5



Introduction

What is Spack?

Spack is a package management tool designed to support multiple versions
and con�gurations of software on a wide variety of platforms and
environments. It was designed for large supercomputing centers, where many
users and application teams share common installations of software on clusters
with exotic architectures, using libraries that do not have a standard ABI.
Spack is non-destructive: installing a new version does not break existing
installations, so many con�gurations can coexist on the same system.

Why Spack?

Is recommended by HSF Packaging group

Experiments (ATLAS and LHCb) has expressed interest in evaluating
Spack during CHEP'19 conference held in Adelaide, South Australia, over
Monday-Friday 4-8 November 2019.

Already used by FCCa, ALICEb

ato build their software on top of existing LCG release
bby a small group inside ALICE

I. Razumov Spack 3-12-2019 2 / 5



Evaluation

The Good:

Spack has an easier syntax (Python), has recipe templates (e.g. for
autoconf or python packages)

A lot of �hacks� we have or want in lcgcmake (e.g. setting a �xed version
of dependency, using git commit id in place of version, �layered� releases1)
are already implemented in Spack

Recipes for many packages are already available in Spack: of 387
�external� packages (i.e. everything but generators), Spack has recipes for
about 279.

We are missing a bunch of Python packages (machine learning, Jupyter),
all GRID packages, a few `go` modules
Migrating the recipes for them is not expected to be a di�cult task, just
time consuming

1a.k.a. chained installations
I. Razumov Spack 3-12-2019 3 / 5



Evaluation

The Not-so-Good:

Spack can only build one package at a time (a �x for that is expected to
arrive next February)

In some cases (e.g. openblas, ROOT) the recipes di�er signi�cantly
between spack and lcgcmake

The concretizer (a part of Spack that resolves versions and dependencies
of packages) has a few problems

Like lcgcmake, Spack uses hashes to uniquely identify a �concretized�
package. However, the hashing in Spack is a bit too aggressive: even
adding a new version of package will change the hash. No ETA for a �x.

I. Razumov Spack 3-12-2019 4 / 5



Evaluation

The Not-so-Good:

Spack can only build one package at a time (a �x for that is expected to
arrive next February)

In some cases (e.g. openblas, ROOT) the recipes di�er signi�cantly
between spack and lcgcmake

We can, for now, work around this by overwriting the recipes for such
packages with our own (spack allows that)
Will try and push the changes upstream.

The concretizer (a part of Spack that resolves versions and dependencies
of packages) has a few problems

Like lcgcmake, Spack uses hashes to uniquely identify a �concretized�
package. However, the hashing in Spack is a bit too aggressive: even
adding a new version of package will change the hash. No ETA for a �x.

I. Razumov Spack 3-12-2019 4 / 5



Evaluation

The Not-so-Good:

Spack can only build one package at a time (a �x for that is expected to
arrive next February)

In some cases (e.g. openblas, ROOT) the recipes di�er signi�cantly
between spack and lcgcmake

The concretizer (a part of Spack that resolves versions and dependencies
of packages) has a few problems :

In some cases (e.g., python packages like matplotlib) one needs to
explicitly specify versions of dependencies, otherwise the concretizer will
pick a default one, and will complain about incompatibility
�Virtual� packages (i.e. packages that have more than one implementation:
blas, lapack, java) are often not resolved correctly � even when you
explicitly set what package provides what in packages.yaml.

E.g., it tends to use just about anything but Netlib's implementation of

LAPACK.

Had to edit recipes to �x that.

Like lcgcmake, Spack uses hashes to uniquely identify a �concretized�
package. However, the hashing in Spack is a bit too aggressive: even
adding a new version of package will change the hash. No ETA for a �x.

I. Razumov Spack 3-12-2019 4 / 5



Evaluation

The Not-so-Good:

Spack can only build one package at a time (a �x for that is expected to
arrive next February)

In some cases (e.g. openblas, ROOT) the recipes di�er signi�cantly
between spack and lcgcmake

The concretizer (a part of Spack that resolves versions and dependencies
of packages) has a few problems

Like lcgcmake, Spack uses hashes to uniquely identify a �concretized�
package. However, the hashing in Spack is a bit too aggressive: even
adding a new version of package will change the hash. No ETA for a �x.

I. Razumov Spack 3-12-2019 4 / 5



Status and Plans

As a �rst step, we will try to use Spack to build an equivalent of
LCG_96b for one platform (x86_64-centos7-gcc8-opt) for the
experiments to test.

It will contain only the packages for which recipes are already present in
Spack

If the test is successful, we will start implementing missing recipes

I. Razumov Spack 3-12-2019 5 / 5


