JUNO Experiment

JUNO Phuysics: The Jiangmen Underground Neutrino Observatory (JUNO), currently under con-
struction in the south of China, will be the largest Liquid Scintillator (LS) detector in the world.
JUNO is a multipurpose neutrino experiment designed to determine neutrino mass hierarchy,
precisely measure oscillation parameters, and study solar neutrinos, supernova neutrinos, geo-
neutrinos, and atmospheric neutrinos. The energy resolution is expected to be 3%/~/E(MeV). To
meet this requirement, precise vertex reconstruction is essential to correct for non-uniformity.
Moreover, vertex information is important in particle identification, background rejection, and
particle direction reconstruction, etc.
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Fig. 1: Schematic view of JUNO detector.

JUNO Detector: The central detector of JUNO contains 20,000 tons of LS and 18,000 20-inch
as well as 25,000 3-inch Photomultiplier Tubes (PMTs). The inner diameter of the acrylic
ball is 35.4 m. The main factors affecting the resolution of vertex reconstruction include the
PMTs Transit Time Spread (TTS) and Dark Count Rate (DCR). In this study, only 20-inch
PMTs from central detector are used for reconstruction, including 5,000 Hamamatsu dynode
PMTs (R12860) and about 13,000 Micro Channel Plates (MCP) PMTs from North Night Vision

Technology (NNVT). The TTS of Hamamatsu PMTs and MCP PMTs is designated as 2.7 ns
and 18 ns, respectively, while the DCR is designated as 15 kHz and 32 kHz, respectively.

Optical Processes: When neutrinos go through the LS, some of them interact with the LS and
emit fluorescent photons. Emitted photons go through a long distance before they are detected
by the PMTs. During their propagation in the LS, these photons are likely to be absorbed,
reemitted, scattered, or reflected. Additionally, the refractive index is 1.49 for the LS and 1.33
for the pure water. The large difference of refractive indices between two materials results in
the large effects of refraction and total reflection at the boundary of two materials, which will
affect the time of flight for optical photons. Hence, the optical model is critical for the vertex
reconstruction and is key for the JUNO experiment.

Time Likelithood Vertex Reconstruction

The vertex of a scintillation event is reconstructed using the timing information of the optical
photons detected by the PMTs.

Residual hit time is used to construct the probability density function (PDF) :
ti,res(RreC, trec) = tj — tof; — trec (1)

The PDF for a single photoelectron (PE) is derived from a Monte Carlo simulation, PDF for
nPE could be calculated by the following equation:
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Fig. 2: PDF for different nPE (Left). PDF to describe TTS and DCR (Right).

The event vertex is calculated by minimizing the likelihood:
L(Rrec, trec) = = ) _ In(fa(ti,res)) 3)
[

ﬁ
where : Rec : vertex position of an event; q; : fraction of scintillation componentsl|;

t; . first hit time of i PMTs; trec : INteraction time of an event; 7; . scintillation decay time;
tof; : time of flight for optical photon;

E4cr - fraction of dark count rate.
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Deep Learning Vertex Reconstruction

Loss function : loss = (I?rec — /ﬁt,,ue)z
Training:

Detector Projection : Sinusoidal projection

e Keep the relative location information of each
PMTs; e Data Set: 2 million Monte Carlo e™, energy
o Build a 230x126x2 matrix. from 1-10 MeV, uniformly distributed within

the central detector;
Structure and hyper parameters:
e Input Variables: (nPE, first hit time) of each

PMTs;

e Output Variables: Vertex position /§,~ec.

e Residual block to go deeper;

e Learning rate: Exponential decay from 103
to 107°;

. . . Testing:
e Train steps: 15 epochs with batch size 64; )

e Data Set : Monte Carlo e™, momentum (0, 1,

..., 10) MeV, 11 * 10k events, uniformly dis-
e CNN structure: 50 convolutional layers with  tributed within the central detector.

about 35 million parameters.

e Adam Optimizer;
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Fig. 3: Projection of detector and structure of CNN network.

Vertex Reconstruction Performance

By comparing the reconstructed event position and the true position in the Monte Carlo simu-
lation, the reconstructed vertex resolution in each direction could be estimated by a gaussian
fit (see Fig.4). The mean values are consistent with zero and the resolutions are similar in the
three directions.
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Fig. 4: An example of reconstructed vertex resolution in each direction

for positron with momentum = 5 MeV using the Time Likelihood method.

The vertex resolution as a function of energy for two methods is shown in Fig.5 (Left). In
general, Time Likelihood outperforms Deep Learning in the central region of detector (R> < 4000
m3), while Deep Learning tends to give more accurate prediction in the total reflection region
(R3 > 4000 m3), where the optical processes are more complicated. Moreover, Deep Learning
shows no reconstruction bias in the whole detector, as shown in Fig.5 (Right).
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Fig. 5: Vertex Resolution vs. Energy (Left). Vertex mean bias vs. R> (Right).

Besides TTS and DCR, time alignment for each individual PMT and waveform reconstruction
will also affects the vertex resolution, which is beyond the scope of this poster.

Conclusion Two algorithms to reconstruct vertex position for point-like events have
been developed. Time Likelihood outperforms Deep Learning in the central region of detector,
while Deep Learning tends to give more accurate prediction in the total reflection region.
Moreover, Deep Learning shows no reconstruction bias in the whole detector. Further study
to remove the bias in the total reflection region for the Time Likelihood, and to take into
account the time alignment for each individual PMT and waveform reconstruction effects,
and the optimization of the Deep Learning network are ongoing.




