Fast neutron spectroscopy with a nitrogen based gaseous detector

<u>I. Katsioulas</u>, P. Knights, T. Neep, K. Nikolopoulos, R. Ward, University of Birmingham

I.Giomataris, M.Gros, T.Papaevangelou CEA-Saclay

> ICHEP 2020 Prague, CZ (online) 29/07/2020

i.katsioulas@bham.ac.uk

This research has been funded by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No 841261 (DarkSphere)

Gas filled neutron detectors

Most popular technologies:

Reaction type:

- ³He proportional counter tubes
- BF₃ proportional counter tubes

Recoil type:

- Methane (CH_4)
- ⁴He

Why another another neutron detector

Most popular technologies:

Methane (CH_{4})

Reaction type:

⁴He

- ³He proportional counter tubes
- BF₃ proportional counter tubes

Small volume Moderated - Thermal neutrons Used as neutron counters

Worldwide shortage

Extremely expensive

Low target mass Need second carrier gas to stop products

Light gases Partial energy deposition from recoils **High-Low energy neutron information** Methane flammable

Highly toxic Not allowed in sensitive environments

The goal - Simple, Fast, Safe

The idea: Large volume spherical detector with nitrogen

- Operational pressure (3 bar)
- Large volume (0.1 m³ 1 m³)
- Low γ-ray efficiency
- Higher stopping power than He
- Inert gas safe not toxic
- Operation in sensitive environments
- Cost efficient
- Operation without moderation
- Measurement of neutron energy

Neutron absorption cross sections

The Spherical Proportional Counter (SPC)

Electric field

Strong dependence on the radial dependence

$$E(r) = \frac{V_0}{r^2} \frac{r_A r_C}{r_C - r_A} \approx \frac{V_0}{r^2} r_A$$

 $r_A = anode radius$ $r_C = cathode radius$

$$C = 4\piarepsilon_0rac{r_cr_a}{r_c-r_a}pprox 4\piarepsilon_0r_a\sim 1\mathrm{pF}$$

Detector volume naturally divided in:

- **Drift region**
- **Amplification region**

Single readout

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | ICHEP 2020

Metallic anode

Glass tube

Metallic rod

Induced Pulses

Pulse Shape Analysis (PSA) parameters

Typical SPC Pulse

Rise time & Width ~ Drift time dispersion

Basic Parameters

- •Baseline
- Noise
- •Amplitude (Pulse Height)
- •Rise time
- •<u>Width</u>
- Integral
- •Number of peaks

A lot of information in the pulse shape

Event discrimination

Rise time [us]

SPC features

Detector features

- Size Ø: 5, 15, 30, 60, 140 cm
- Sphere: Steel, Copper, Aluminium, Glass, Plexiglass
- Sensor size Ø: 0.5 14 mm
- Low capacitance low noise
- Gas: Xe, Ar, Ne, He, CH₄, N₂
- High voltage on sensor
- Large gain operation:Single e⁻ threshold
- Low gain operation
- High pressure operation
- Low pressure operation (Low P TPC)
- Used for n, γ, p, ions
- Applications: from γ-spectroscopy to DM!

I. Giomataris and G. Charpak in CEA Saclay

'SEDINE' in LSM, France

A. McDonald at Queen's

SPC's most notable application: **NEWS-G Light Dark Matter** searches with an SPC

Exploring the DM mass range below 0.1 GeV - 10 GeV

Pacific Northwest

UK, France, Greece, Canada, US Ioannis Katsioulas | <u>i.katsioulas@bham.ac.uk</u> | ICHEP 2020 11

ALBERTA

TRIUMF

Talk: 29/07 17:00, P Knights

Neutron detection with SPC Proof of principle

140 cm Ø vessel N2 at 200 mbar 8 mm Ø anode

Bougamont, E et al (2017). NIM A, 847, 10–1

First results:

- Measured ²⁵²Cf, ²⁴¹Am⁹Be and ambient fast neutron spectra
- Measurement of thermal neutrons
- Operation at 0.2-0.5 bar
- HV reached 6 kV

Limiting factors then:

- → Wall effect
- → Low pressure
- Sparking Instability
- Impurities
- Charge collection inefficiency

Range versus Energy and Wall Effect

Bougamont, E et al (2017). NIM A, 847, 10–1, https://doi.org/10.1016/j.nima.2016.11.007

Recent developments for the SPC

Resistive sensors

sensors

Multi-anode

Gas purification techniques

<u>I. Katsioulas et al, JINST, 13, 11, P11006, 2018</u> 10.1088/1748-0221/13/11/P11006

<u>18</u> <u>Giganon, A. et al, 2017. "A Multiball Read-out for the</u> <u>Spherical Proportional Counter.", JINST</u> Ioannis Katsioulas | <u>i.katsioulas@bham.ac.uk</u> | ICHEP 2020

Electric field strength in SPC volume

Comparison of E-field magnitude for different anode diameters

$$E(r) = \frac{V_0}{r}$$
 Anode radius

Gain and drift velocity dependence on E/P

$$\ln(M) = \int_{E(r_1)}^{E(r_2)} \underbrace{a(E/P)}_{dE} \frac{dr}{dE} dE$$
$$v_{drift} = \mu \frac{E}{P}$$

The multi-anode sensor - ACHINOS

Electric field magnitude with ACHINOS

Advantages

- 1. Amplification tuned by the anode ball size
- 2. Volume electric field tuned by the size and number of anodes of the ACHINOS structure
- 3. Individual readout TPC-like capabilities to the SPC

ACHINOS features

I. Giomataris et al, JINST 12 P12031 I. Giomataris et al, arXiv:2003.01068v1, DLC ACHINOS

Measurement of the 5.9 keV ⁵⁵Fe X-ray line

Implemented module using 3D printing

- Good energy resolution
- High pressure operation (~ 2 bar)
- High gain
- Stability
- 2 channel readout

Ioannis Katsioulas | <u>i.katsioulas@bham.ac.uk</u> | ICHEP 2020

Gas purification

- Contaminants: O₂, H₂O, electronegative gases
- Filtering with:
 - Getter
 - Purpose made filter
- Filtering in a gas recirculation system is planned

Talk: 31/07 8:40, T. Neep

Simulating the detector response

Primary interaction

FEM E-field simulations

Garfield++

Katsioulas, I. et al, 2017."Development of a Simulation Frameworkfor Spherical ProportionalCounters", arXiv: 2002.02718

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | ICHEP 2020

E-Field Strength [V/cm]

Simulating the detector response Current [fC/ns] Units] 5 keV Electrons; Initial Radius = 20 cm — He 72.5% Ne 25.0% CH 2.5% 1.0 bar — Ne 94.0% CH 6.0% 1.0 bar 5 keV Electrons; Initial Radius = 20 cm - He 72.5% Ne 25.0% CH 2.5% 1.0 bar - Ne 94.0% CH 6.0% 1.0 bar olitude [Arb. 1.0 1.5 2.0 Pulse Integral 1e7 Electronics Pulse treatment 160 175 140 150 120 125 100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 'n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 75 Time [ms] Time [ms] 50 25 40

Ioannis Katsioulas | <u>i.katsioulas@bham.ac.uk</u> | ICHEP 2020

Initial radius [cm]

Katsioulas, I. et al. 2017. "Development of a Simulation Framework for Spherical Proportional Counters".arXiv:2002.02718

Simulation of neutron transport

<u>Simulation Parameters</u>: Ø vessel 30 cm Nitrogen at 300 mbar Anode Ø 2 mm

Thermal neutron simulation

Simulated pulse amplitude distribution

Simulated risetime vs amplitude distribution

Simulation of fast neutrons (4 MeV)

Simulated pulses

Ioannis Katsioulas | i.katsioulas@bham.ac.uk | ICHEP 2020

Simulated amplitude distribution

Understanding the detector response

Simulated rise time vs amplitude distribution Reaction type

Simulated rise time vs amplitude distribution Radial extent of ionisation

R&D at Birmingham

Calibration with a triple alpha source

Glass sensor

<u>Setup at UoB</u> Ø vessel 30 cm Anode Ø 3 mm Saes MicroTorr Purifier

Planning:

- Operation at 1 2 bar
 - Minimisation of wall effect
 - Larger target mass
- Calibration with mono-energetic neutrons
- Validation of simulations with measurement

Instrumentation in UoB for neutron measurements

ACHINOS - Achievements

- Fully coated with DLC
- Improved accuracy on anode placement
- Improved spacing

Gas Filter - Aims

- **Replace commercial filters**
- Reduce Rn emanation
- Maintain efficiency
- Known ingredients

Copper Oxide H₂O removal

sieves for O₂

Activation at the **University of Liverpool**

Collaboration with Dr. K.Mavrokoridis Team

First application - Neutron background at Boulby

Recent activities at Boulby

UNIVERSITY^{OF} BIRMINGHAM

- Instrumentation R&D at controlled
 environment
 - Rate effects
 - Space charge effects
- Neutron flux measurement
 - Thermal neutron
 - Fast neutron
- Including energy information
- Method applicable to all other underground laboratories

Aluminium S30

Recent activities at Boulby

Summary and Future plans UNIVERSITY OF BIRMINGHAM

- The combination of the spherical proportional detector and N₂ poses as a strong alternative of ³He counters
- Promising first measurement of fast neutron energies
- Detailed simulation crucial for deconvoluting detector response
- Recent advancements in spherical detector instrumentation enables neutron spectroscopy capabilities

- Increasing operating pressure to over 1 bar
- Measurement of detector response to mono-energetic neutrons
- Validation of simulation results
- Development of an unfolding method to extract neutron energy spectra

Thank you for listening!

Questions?

ZOOM room: https://bham-ac-uk.zoom.us/j/98017147907?pwd=ejVrU mQySHk3OUxpbmw4RktpTXowUT09

Starting after the end of the session!

Backup slides

Results with the prototypes Spherical Proportional Counter.", JINST

Rise time reduction

Single anode

11-anode ACHINOS

Giganon, A. et al, 2017. "A Multiball Read-out for the

Development of an advanced simulation toolkit for gaseous detector simulations

The power of combining state-of-the art software

Simulation of particle passage through matter

- Build geometry
- Transport of particles
- Particle interaction
- Generation-Transport of secondaries
- Energy deposition in the ROI

Simulation of gaseous detectors

- Drift of charges
- Diffusion
- Avalanche
- Signal Induction
- Electronics

Finite Element Methods

- Electric Field
- Magnetic Field
- Particle tracks

R.Ward

N-32-2 Experimental Computing

Illustration of the basic analysis principle

¹⁰⁹Cd source Irradiation through 200 μ m Al window P = 100 mb, Ar-CH4 (2%)

Efficiency of the cut in rt → ~ 70% signal (Cd line) Significant background reduction