Cho-Maison Monopole: BPS Limit and Mass Bound
Petr Beneš̌1, Filip Blaschke ${ }^{1,2}$
${ }^{1}$ Institute of Experimental and Applied Physics, Czech Technical University in Prague
${ }^{2}$ Faculty of Philosophy and Science, Silesian University in Opava
CTU

CZECH TECHNICAL
CZECH TECHNI UNIVERSITY
IN PRAGUE
petr.benes@utef.cvut.cz

Magnetic Monopole in Standard Model

't Hooft-Polyakov

- Based on the particular pattern of SSB
- Relevant second homotopy group is trivial $\pi_{2}(S U(2) \times U(1) / U(1))=\{1\}$
- \Rightarrow 't Hooft-Polyakov magnetic monopole doesn't exist in SM

Cho-Maison: Topology

- Desired topology can be found elsewhere
- Namely in the Higgs doublet field

$$
H=\frac{v}{\sqrt{2}} \rho \xi \quad \text { where } \quad \xi^{\dagger} \xi=1
$$

- Due to $U(1)_{Y}$ invariance ξ can be regarded as a $\mathbb{C} P^{1}$ field
- But $\pi_{2}\left(\mathbb{C} P^{1}\right)=\mathbb{Z}$
$>\Rightarrow$ Cho-Maison magnetic monopole could possibly, exist in SM...

Cho-Maison: Mass

But:

- Mass of the Cho-Maison monopole is infinite $M=\frac{2 \pi}{g^{\prime 2}} \int_{0}^{\infty} \frac{\mathrm{d} r}{r^{2}}+$ finite terms $=\infty$ $>\Rightarrow$ Physical (i.e., finite-mass) Cho-Maison magnetic monopole cannot exist in SM!

Regularizations of Monopole Mass

The idea:

Perhaps some effective extension of SM might allow for a finite-mass Cho-Maison monopole
In particular: Since the divergence is proportional to $1 / g^{\prime 2}$, a modification of the $U(1)_{Y}$ kinetic term might do the job

CKY Regularization

Cho, Kim, Yoon (1997) proposed the following model:

$$
\mathcal{L}_{\mathrm{CKY}}=\left|D_{\mu} H\right|^{2}-V(H)-\frac{1}{4 g^{\prime 2}} \epsilon B_{\mu \nu}^{2}-\frac{1}{2 g^{2}} \operatorname{Tr}\left[F_{\mu \nu}^{2}\right]
$$

Notice the presence of ϵ (a function of $|H|^{2} / v^{2}$):

- If $\epsilon=1$, we recover SM (with infinitely heavy monopole)
- If ϵ is a non-trivial function satisfying $\epsilon(0)=0$, monopole mass is finite!
- Ellis, Mavromatos, You (2016) found ϵ allowing monopoles mass as low as $\sim 5.5 \mathrm{TeV}$
\longrightarrow How light can monopole be?

BPS Regularization

Inspired by CKY we propose another model, whose main virtue is that it is a BPS theory:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{BPS}}=\left|D_{\mu} H\right|^{2} & -\frac{v^{2}}{4 g^{2}|H|^{2}} h^{2}\left(\operatorname{Tr}\left[F_{\mu \nu}^{2}\right]-\frac{2}{|H|^{4}} \operatorname{Tr}\left[F_{\mu \nu} H H^{\dagger}\right]^{2}\right) \\
& -\frac{1}{4}\left(\frac{h^{\prime}}{g|H|^{2}} \operatorname{Tr}\left[F_{\mu \nu} H H^{\dagger}\right]+\frac{f^{\prime}}{g^{\prime}} B_{\mu \nu}\right)^{2}
\end{aligned}
$$

Model is parameterized by f^{\prime} and h (again functions of $|H|^{2} / v^{2}$)

- Cannot be reduced to SM (for any f^{\prime}, h)

For suitable f^{\prime}, h it allows for finite-mass monopoles

- Although phenomenologically not relevant directly, it has some indirect implications. . .

Implications of the BPS Theory $\mathcal{L}_{\text {BPS }}$

Exact Monopole Solutions: Theorists' Playground

- Equations of motion ("BPS equations") are of the first order!
- \Rightarrow Can be solved more easily
- Example: for $f^{\prime}=|H|^{2} / v^{2}$ and $h=1$ the spherically symmetric monopole solution is:

$$
\begin{aligned}
& A_{i}^{a}=\left(1-\exp \left\{-\frac{g}{g^{\prime}}\left[\frac{\mu r}{2} \frac{2+\mu r}{1+\mu r}-\log (1+\mu r)\right]\right\}\right) \varepsilon_{i a k} \frac{x_{k}}{r} \\
& H=\mathrm{i} \frac{v}{\sqrt{2}\left(1+\frac{1}{\mu r}\right)}\binom{\sin (\theta / 2) \mathrm{e}^{-\mathrm{i} \varphi}}{-\cos (\theta / 2)} \quad\left(\text { where } \mu \equiv v g^{\prime} \approx 86.1 \mathrm{GeV}\right)
\end{aligned}
$$

with mass

$$
M=4 \pi v\left(\frac{1}{2 g}+\frac{1}{3 g^{\prime}}\right) \approx 5.32 \mathrm{TeV}
$$

- Exact solutions can be found also for other $f^{\prime}, h \ldots$

Monopole Mass Bound: Phenomenology

By definition, BPS theory has a lower energy (Bogomolny) bound:

$$
\mathcal{E} \geq \frac{1}{2} v \varepsilon_{i j k} \partial_{i}\left(\frac{1}{g} h \operatorname{Tr}\left[F_{j k} \xi \xi^{\dagger}\right]+\frac{1}{g^{\prime}} f B_{j k}\right)
$$

\Rightarrow allows to derive lower bound on monopole mass:

$$
M \geq \frac{2 \pi v}{g} \approx 2.37 \mathrm{TeV}
$$

Nontrivially, this bound holds not only for the BPS theory, but also for the CKY theory:

- Regardless of the choice of f^{\prime}, h or ϵ, monopole mass cannot be lower
$\downarrow \Rightarrow$ mass bound is phenomenologically relevant

Reference:

