

Cho–Maison Monopole: BPS Limit and Mass Bound

Petr Beneš¹, Filip Blaschke^{1, 2}

CZECH TECHNICAL UNIVERSITY IN PRAGUE

CTU

Institute of Experimental and Applied Physics, Czech Technical University in Prague ² Faculty of Philosophy and Science, Silesian University in Opava

petr.benes@utef.cvut.cz

Magnetic Monopole in Standard Model

't Hooft–Polyakov

Based on the particular pattern of SSB Relevant second homotopy group is trivial $\pi_2(SU(2) \times U(1)/U(1)) = \{1\}$ ightarrow 't Hooft–Polyakov magnetic monopole doesn't exist in SM

Cho–Maison: Topology

- Desired topology can be found elsewhere
- Namely in the Higgs doublet field

$$H = \frac{v}{\sqrt{2}}\rho\xi \quad \text{where} \quad \xi^{\dagger}\xi = 1$$

 \blacktriangleright Due to $U(1)_Y$ invariance ξ can be regarded as a $\mathbb{C}P^1$ field

Cho–Maison: Mass

But:

Mass of the Cho–Maison monopole is infinite:

 $M = \frac{2\pi}{q'^2} \int_0^\infty \frac{\mathrm{d}r}{r^2} + \text{finite terms} = \infty$

ightarrow Physical (i.e., finite-mass) Cho–Maison magnetic monopole cannot exist in SM!

• But
$$\pi_2(\mathbb{C}P^1) = \mathbb{Z}$$

 \blacktriangleright \Rightarrow Cho–Maison magnetic monopole could, possibly, exist in SM...

Regularizations of Monopole Mass

The idea:

Perhaps some effective extension of SM might allow for a finite-mass Cho–Maison monopole

In particular: Since the divergence is proportional to $1/g'^2$, a modification of the $U(1)_Y$ kinetic term might do the job

CKY Regularization

Cho, Kim, Yoon (1997) proposed the following model:

$$\mathcal{L}_{\text{CKY}} = |D_{\mu}H|^2 - V(H) - \frac{1}{4q'^2} \epsilon B_{\mu\nu}^2 - \frac{1}{2q^2} \text{Tr} \left[F_{\mu\nu}^2\right]$$

Notice the presence of ϵ (a function of $|H|^2/v^2$): \blacktriangleright If $\epsilon = 1$, we recover SM (with infinitely heavy monopole)

BPS Regularization

Inspired by CKY we propose another model, whose main virtue is that it is a BPS theory:

$$\mathcal{L}_{\text{BPS}} = |D_{\mu}H|^2 - \frac{v^2}{4g^2|H|^2} h^2 \left(\operatorname{Tr} \left[F_{\mu\nu}^2 \right] - \frac{2}{|H|^4} \operatorname{Tr} \left[F_{\mu\nu}HH^{\dagger} \right]^2 \right) - \frac{1}{4} \left(\frac{h'}{|H|^4} \operatorname{Tr} \left[F_{\mu\nu}HH^{\dagger} \right] + \frac{f'}{|H|^4} B_{\mu\nu} \right)^2$$

- ▶ If ϵ is a non-trivial function satisfying $\epsilon(0) = 0$, monopole mass is *finite*! \blacktriangleright Ellis, Mavromatos, You (2016) found ϵ allowing monopoles mass as low as $\sim 5.5 \,\mathrm{TeV}$
 - \rightarrow How light can monopole be?

 $4 \langle g | H |^2 - 1 \langle g' - \mu \nu \rangle$

Model is parameterized by f' and h (again functions of $|H|^2/v^2$)

- \blacktriangleright Cannot be reduced to SM (for any f', h)
- \blacktriangleright For suitable f', h it allows for finite-mass monopoles
- Although phenomenologically not relevant *directly*, it has some *indirect* implications...

Implications of the BPS Theory \mathcal{L}_{BPS}

Exact Monopole Solutions: Theorists' Playground

- Equations of motion ("BPS equations") are of the first order!
- \blacktriangleright \Rightarrow Can be solved more easily
- \blacktriangleright *Example*: for $f' = |H|^2/v^2$ and h = 1 the spherically symmetric monopole solution is:

$$A_i^a = \left(1 - \exp\left\{-\frac{g}{g'}\left[\frac{\mu r}{2}\frac{2 + \mu r}{1 + \mu r} - \log\left(1 + \mu r\right)\right]\right\}\right)\varepsilon_{iak}\frac{x_k}{r}$$

Monopole Mass Bound: Phenomenology

By definition, BPS theory has a lower energy (Bogomolny) bound:

$$\mathcal{E} \geq \frac{1}{2} v \varepsilon_{ijk} \partial_i \left(\frac{1}{g} h \operatorname{Tr} \left[F_{jk} \xi \xi^{\dagger} \right] + \frac{1}{g'} f B_{jk} \right)$$

 \Rightarrow allows to derive lower bound on monopole mass:

$$M \geq \frac{2\pi v}{g} \approx 2.37 \text{ TeV}$$

with mass

$$M = 4\pi v \left(\frac{1}{2g} + \frac{1}{3g'}\right) \approx 5.32 \text{ TeV}$$

 \blacktriangleright Exact solutions can be found also for other $f', h \dots$

Nontrivially, this bound holds not only for the BPS theory, but also for the CKY theory:

 \blacktriangleright Regardless of the choice of f', h or ϵ , monopole mass cannot be lower \rightarrow mass bound is phenomenologically relevant

Reference:

PTEP 2018 (2018) no.7, 073B03, arXiv:1711.04842

ICHEP 2020, Prague, 28 July - 6 August, 2020