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@ Particle-antiparticle oscillations:
o Observed: K® — K° (more recently also B® — B°, D° — D)
Gell-Mann and Pais (1955)
o Hypothetical: neutron-antineutron (baryon number violation, AB = 2)
Kuzmin (1970), Glashow (1979), Mohapatra and Marshak (1980),
Kuo and Love (1980), Chang and Chang (1980)
@ Neutrino flavour oscillations (ve +— v, etc.)

Pontecorvo (1957),
Maki, Nakagawa, Sakata (1962),
Gribov and Pontecorvo (1968),

Bilenky and Pontecorvo (1976)
@ 2015 Nobel Prize in Physics to T. Kajita (Super-Kamiokande) and A. McDonald
(Sudbury Neutrino Observatory)

"for the discovery of neutrino oscillations, which shows that neutrinos have
mass."”



@ Standard approach to neutrino oscillations and the theoretical challenge

@ Oscillations and coherence in Quantum Mechanics
- two-level systems
- coherent states in quantum optics

@ Intrinsically coherent oscillating particle states

@ Conclusions and outlook
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@ Lagrangian with flavour violation (induced by Yukawa terms in SM Lagrangian)
and Dirac neutrino masses:

L = Wyeiawue +Wl,”i($llll,“ — ( wye wy,u ) ( Mee Mgy, ) < \'ljl/e >

Mey My, llll,H
@ Diagonalization in terms of massive neutrino fields W1, W5 of masses my, mo:
v, (x) cosf sinf V(x) ’ 2mey,
v =\ _sing 0 v , tan“0 = —
v (X) sinf cos 2(x) My — Mee
leading to
L = Wl(ia —mp)V; +W2(/‘a — my)Vs.

@ Canonical quantization of the diagonalized Lagrangian is trivial:

Vitx) = / 2n 3/2r2( A Ur(P)e ™™ + BY\(p) Va(p)e™ ), i =1,2

Massive neutrino states: |vj\(p)) = AI.A(p)|<D0), [7ia(p)) = BI.T)\(p)MDo}
|®g) — physical vacuum
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cannot define creation and annihilation operators!

How do we describe the electron and muon (flavour) neutrinos?

How do oscillations happen?

e Pontecorvo’s conjecture: There exist flavour neutrino states |v.), [v,) defined
as COHERENT superpositions of massive neutrino states |v1), |2) with
different masses (my, my), by replicating the mixing formula for the fields:

(e )=( et oy (1),

@ Then oscillations can take place:

A =0003eV?, w28 =08, E, = 1GeV
Prewn = wup)le ™ ve(p))]?
Am?
.2 .2
= 20 — L
sin“(26) sin <4E >,
Am? = m3—m3, M«
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- flavour-violating Lagrangian;
- massive neutrinos;
- flavour neutrino states are coherent superpositions of massive neutrino states
with different masses (belonging to different Fock spaces).

@ Recall QFT: particles with different masses are always incoherently produced and
absorbed!

@ Attempts to incorporate the oscillation phenomenon into quantum field theory:

Giunti, Kim and Lee (1992), Giunti, Kim, Lee and Lee (1993), Blasone and Vitiello (1995),
Grimus and Stockinger (1996), Giunti and Bilenky (2001),

Giunti (2007), Akhmedov and Kopp (2010), etc.

Coherent flavour neutrino states cannot be derived in conventional QFT!
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Quantum mechanical system with two stationary states

@ System described by Hamiltonian Hp with (orthonormal) basis states |0) and|1)
@ Include interaction:
H = Ho + Hint

- new basis of stationary states |¢1) and |¢2):
H|¢i) = Eil¢i), i=1,2.
o t=1y

o Initially, system prepared in the stationary state |0), evolves with Hp
o Turn on interaction suddenly (diabatically)

0) = c1|p1) + c2lp2),  |aaf + e =1

Initial state |0) is a coherent superposition of the states |¢1) and |¢7)
o The system starts to evolve with the Hamiltonian H.
o t=1ty+ At
e Remove suddenly the interaction and determine the state of the system (can be
either |0) or |1))
Ploy 1y = (1|e=™MAt0) ~ sin® (BEAL)
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Note:
- because of Stone—von Neumann theorem, all the representations of the canonical

algebra for a given quantum mechanical system are equivalent, implying unitary change

of basis:
(B)=(a ) ()

- the states of the two bases are well-defined as stationary states of either Hy or H;
- the coherent superposition of states (leading to interference and finally to oscillation)
is achieved by turning on/off suddenly the interaction.

Can this simple quantum mechanical picture be extended straightforwardly to

particle oscillations?
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In the case of neutrinos:

- the flavour violating part of the Lagrangian (mixing the flavour fields) cannot be
turned on and off at will;

- the coherence of flavour neutrino states is not triggered by external factors, it is
intrinsic;

- the quantum mechanical principle of superposition of states fails: the two massive
neutrino states which are superposed are not states of the same system, but states of
two distinct systems!

The quantum mechanical interpretation of neutrino oscillation as two-level

system oscillation is conceptually untenable!

10
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Coherent states in quantum optics

o Coherent states are superpositions of infinite number of Fock states
Klauder (1960),
Sudarshan (1963), Glauber (1963)

@ Eigenstates of the annihilation operator of the Harmonic oscillator:
ala) = ao|a), aj0) =0,

o = |ale” is a complex number

@ Then

i.e. the coherent state is a superposition of an infinite number of particle states
(or Fock states), all belonging to the same Fock space.

@ In QFT, the notion of coherent state appears as vacuum condensate.

11



How to define coherent oscillating states in quantum field theory, as

superposition of finite number of particle states belonging to
different Fock spaces?
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Intrinsically coherent oscillating neutrino states

@ Return to first principles:
In QFT, particle states are defined by the action of an operator on the physical
vacuum state.
@ |dea: associate the flavour neutrino states to the actual flavour neutrino fields of
the Standard Model.
Tureanu (2019)

Connect massless to massive neutrino fields

@ Procedure reminiscent of the Nambu—Jona-Lasinio model for dynamical

generation of nucleon masses
Nambu and Jona-Lasinio (1961),

see also Umezawa, Takahashi and Kamefuchi (1964)
inspired by Bardeen—Cooper—Schrieffer theory of superconductivity in
Bogoliubov's formulation

Bogoliubov (1958)
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- Flavour number-violating Hamiltonian
H = / d3x[ -V, i’yiﬁ;lll,,e — WUM i’y"ai\l!,,u]
=+ /d3X [meewuewue + m,u,uwuu\uuu + Mey (Wuewuﬂ + WIJM\I'IVG) ] = Ho + Hmass-

- Diagonalization in Heisenberg picture, starting from the identification of fields at
t=0:
V,,(x,0) = ¢,,(x,0), I=epu
where
iv*0u1y,(x) =0  are SM massless neutrino fields.

3 . .
w) = [ (%)Z/fm?(a,A(p>uA(p)e—'PX+b7A(p>vA(p)e'PX), I= e

- Treat Hpass as an interaction term for massless SM flavour fields.
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- Nondiagonal Hamiltonian in terms of massless (bare) particles’ operators :

H = / d3pz{ (a13(P)2er(P) + bE,(P)Ber(P) + af (P)2r(P) + b (P) by (p)

+ sgn ) [mee (AL (PIBLA(—P) + ber(P)aer(—P) ) + My (11 (B)BA(—P) + Ba (P2
Men (310 (P)BA(—P) + bur(P)aer(~P) + &l (P)Ly () + bea(P)an(~P)) | }-

_l’_
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- Nondiagonal Hamiltonian in terms of massless (bare) particles’ operators :

H = / d3pz{ (a13(P)2er(P) + bE,(P)Ber(P) + af (P)2r(P) + b (P) by (p)
+ sgn ) [mee (AL (PIBLA(—P) + ber(P)aer(—P) ) + My (11 (B)BA(—P) + Ba (P2
e (3l (PIB]A(=P) + Ba(P)aea(—P) + 3\ (B)L(~P) + ber(P)aa () ) | }-

- Diagonal form:

/d3 > E/p[ (p)+B,TA(p)B,-A(p)}, Eip = /02 + m?

A,i=1,2

- The eigenstates of the diagonal Hamiltonian are the physical particle states
(Bogoliubov quasiparticles).
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Three sets of canonical fields:

Yy, (x), | = e, u massless,
a;n(p), bix(p)

¥y, (x), i = 1,2 massless,
ain(p), bia(p)

Two (orthogonal) vacua:
|0) non-physical
ain(p)|0) = biA(p)[0) =0

|0) non-physical
2ix(p)|0) = bir(p)[0) =0
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(20 )< (ot e ) ()

V,.(x), i = 1,2 with masses my, m> |®g)  physical

Aix(p), Bia(P) Air(P)|®o) = Bia(P)|®o) =0
- Bogoliubov transformations between the "massless” and " massive” operators:
Ain(p) = aipai)\( )"‘ﬁlp ,)\ ), =12,

Bi/\(p) = aipbi)\(p) Blpa,)\ 7 Ajp = 1 + ﬁlp sgn A 1 - =
Eip \/



- Physical vacuum is a condensate of " Cooper-like pairs” of massless
neutrino-antineutrino — coherent state!

|Po) = M p.x <aip — Bip a,T,\(P)b,TA(—P)> 0},
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- Physical vacuum is a condensate of " Cooper-like pairs” of massless
neutrino-antineutrino — coherent state!

[®0) = Mipa (cip — Bip s (P)1\(—P)) [0),

such that

1/2

(0[®g) =Mjpx cjp=Mjpa <1 + ;) — exp [—(m% + m%)/dp] =0,
1

in the infinite volume and momentum limit.

- Fock spaces built on the vacua |0) and |®g) do not contain any common states —
connection to Haag's theorem!

- Massive neutrino states interpreted as Bogoliubov quasiparticles.
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and
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- Oscillation amplitude is never zero!
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- There is always a portion of muon neutrino in the electron neutrino and vice-versa.
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- Define oscillating neutrino states by
ve(p.A) = al,(p)®0) = (cosfaspAL, (p) + sin fazpAl, () ) o),
= cosf 1/2+p/2E1p ’Vl(p)> +sind 1/2+p/2E2p ’VQ(p)>

and

pu(.N) = 3),\(P)|%0) = (—sinBaspAl, (p) + cosbaze Al (p) ) [00)
= —sinf /1/2+ p/2E;, [v1(p)) + cosO \/1/2 4 p/2Exp [12(p)).

- Oscillation amplitude is never zero!

2 2 2\ 2 2
1. : 1m? _im 1m _im
Avesy :fsm29e_’pt[— 1->-2) e +(1-2-2) e ’2Pt}.
B2 4p p
- There is always a portion of muon neutrino in the electron neutrino and vice-versa.
- In the ultrarelativistic limit, one recover's Pontecorvo's oscillation probability:

A 2
Py, = sin? 20 sin? (J:t) . Am? = mg - m%.
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@ Coherence of flavour states is the key element for oscillations, which cannot be
implemented by usual QFT prescriptions.

@ Proposed prescription for constructing intrinsically coherent neutrino states, by
establishing a one-to-one correspondence with the Standard Model massless
neutrino states.

@ Procedure of defining oscillating particle states can be implemented for any type
of oscillating systems (Ko — Ko, n — i, Majorana neutrinos, seesaw mechanism).

e Quantitatively significant differences for nonrelativistic neutrinos (see KATRIN
and PTOLEMY experiments) and possibly for MSW effect (especially neutrinos in
extreme conditions).

o First step towards elucidating

the mechanism of interaction (production and absorbtion) of oscillating
particle states.
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