GUT inspired Gauge-Higgs Unification Model

Yuta Orikasa (IEAP, CTU in Prague)

Collaborators:

Shuichiro Funatsu, Hisaki Hatanaka, Yutaka Hosotani, Naoki Yamatsu <u>2006.02157</u> [hep-ph]

Symmetry breakings

Gauge-Higgs Unification model

Symmetry breakings $SO(5) \times U(1)_X$ **Boundary Condition** $\rightarrow SU(4) \times U(1)_X \simeq SU(2)_R \times SU(2)_L \times U(1)_X$ Brane scalar Z_R, W_R $\rightarrow SU(2)_L \times U(1)_Y$ Hosotani mechanism Z, W $\rightarrow U(1)_{em} \gamma$

 $A_{\mu}(x,-y) = PA_{\mu}(x,y)P^{-1} \qquad A_{y}(x,-y) = -PA_{y}(x,y)P^{-1}$

SO(5) gauge symmetry is broken by orbifold boundary condition

gauge-Higgs unification

Higgs boson is a component of higher dimensional gauge bosons

Quadratic divergence is protected by gauge symmetry

Brane scalars

A-model

$$S_{\text{brane}} = \int d^5 x \sqrt{-G} \,\delta(y) \left\{ - (D_\mu \Phi)^{\dagger} D^\mu \Phi - \lambda_\Phi (\Phi^{\dagger} \Phi - w^2)^2 \right\} ,$$
$$D_\mu \Phi = \left(\partial_\mu - ig_A \sum_{a_R=1}^3 A^{a_R}_{\mu} T^{a_R} + i \frac{1}{2} g_B B_\mu \right) \Phi , \quad \tilde{\Phi} = i\sigma_2 \Phi^*$$

Breaks SO(4) symmetry

B-model

$$S_{\text{brane}}^{\Phi} = \int d^5 x \sqrt{-\det G} \,\delta(y) \\ \times \Big\{ - (D_{\mu} \Phi_{(\mathbf{1},\mathbf{4})})^{\dagger} D^{\mu} \Phi_{(\mathbf{1},\mathbf{4})} - \lambda_{\Phi_{(\mathbf{1},\mathbf{4})}} \big(\Phi_{(\mathbf{1},\mathbf{4})}^{\dagger} \Phi_{(\mathbf{1},\mathbf{4})} - |w|^2 \big)^2 \Big\}, \\ D_{\mu} \Phi_{(\mathbf{1},\mathbf{4})} = \Big\{ \partial_{\mu} - ig_A \sum_{\alpha=1}^{10} A_{\mu}^{\alpha} T^{\alpha} - ig_B Q_X B_{\mu} \Big\} \Phi_{(\mathbf{1},\mathbf{4})} .$$

Hosotani Mechanism

Hosotani, 1983

Wilson line phase $\theta_{\mathfrak{F}}$ given by

$$exp\left(\frac{i}{2}\theta_H 2\sqrt{2}T^{\hat{4}}\right) = exp\left(ig_A \int_0^L dy \langle A_y \rangle\right)$$

 $\theta_H \neq 0 \quad \Rightarrow \quad SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$

 θ_H is a minimum of the effective potential

The Effective Potential

$$V_{eff}(\theta_H) = \sum \pm \frac{1}{2} \int \frac{d^4p}{(2\pi)^4} \sum_n \ln\left(p^2 + m_n(\theta_H)^2\right)$$

11

A model

Old model

Table 1: Masses and widths of Z' bosons, $Z^{(1)}$, $\gamma^{(1)}$, and $Z_R^{(1)}$ ($N_F = 4$)

$ heta_{H}$	$\frac{z_L}{10^4}$	m_{KK}	$m_{Z^{(1)}}$	$\Gamma_{Z^{(1)}}$	$m_{\gamma^{(1)}}$	$\Gamma_{\gamma^{(1)}}$	$m_{Z_{R}^{(1)}}$	$\Gamma_{Z_R^{(1)}}$
[rad.]	10	[TeV]	$[\mathrm{TeV}]$	[GeV]	$[\mathrm{TeV}]$	[GeV]	$[{\rm TeV}]$	[GeV]
0.115	10	7.41	6.00	406	6.01	909	5.67	729
0.0917	3	8.81	7.19	467	7.20	992	6.74	853
0.0737	1	10.3	8.52	564	8.52	1068	7.92	1058

Table 2: Couplings of neutral vector bosons (Z' bosons) to fermions in unit of $g_w = e/\sin\theta_W$ for $\theta_H = 0.115$. Corresponding Z-boson coupling in the SM are $(g_{Z\nu}^L, g_{Z\nu}^R) = (0.57027, 0), (g_{Ze}^L, g_{Ze}^R) = (-0.30651, 0.26376), (g_{Zu}^L, g_{Zu}^R) = (0.39443, -0.17584)$ and $(g_{Zd}^L, g_{Zd}^R) = (-0.48235, 0.08792).$

f	g_{Zf}^L	g^R_{Zf}	$g^L_{Z^{(1)}f}$	$g^R_{Z^{(1)}f}$	$g^L_{Z^{(1)}_R}$	$g^R_{Z^{(1)}_R f}$	$g^L_{\gamma^{(1)}f}$	$g^R_{\gamma^{(1)}f}$
ν_e	0.57041	0	-0.1968	0	0	0	0	0
$ u_{\mu}$	0.57041	0	-0.1968	0	0	0	0	0
$ u_{ au}$	0.57041	0	-0.1967	0	0	0	0	0
e	-0.30659	0.26392	0.1058	1.0924	0	-1.501	0.1667	-1.983
μ	-0.30659	0.26391	0.1058	1.0261	0	-1.420	0.1667	-1.863
au	-0.30658	0.26391	0.1057	0.9732	0	-1.354	0.1666	-1.767
\overline{u}	0.39453	-0.17594	-0.1361	-0.7152	0	0.9846	-0.1111	1.2983
c	0.39453	-0.17594	-0.1361	-0.6631	0	0.9205	-0.1111	1.2036
t	0.39339	-0.17712	0.5068	-0.4764	1.0314	0.6899	0.4158	0.8666
d	-0.48247	0.087972	0.1665	0.3576	0	-0.4923	0.05557	-0.6491
s	-0.48247	0.087970	0.1664	0.3315	0	-0.4602	0.05556	-0.6018
b	-0.48254	0.087964	-0.6303	0.2387	1.0292	-0.3446	-0.2082	-0.4331

	A-model
Quark	$({f 3},{f 5})_{rac{2}{3}}$ $({f 3},{f 5})_{-rac{1}{3}}$
Lepton	$({f 1},{f 5})_0^\circ \ ({f 1},{f 5})_{-1}^\circ$
Dark fermion	$(1,4)_{rac{1}{2}}$
Brane fermion	$egin{array}{c} ({f 3}, [{f 2}, {f 1}])_{{7\over 6}}, {1\over 6}, -{5\over 6} \ ({f 1}, [{f 2}, {f 1}])_{{1\over 2}}, -{1\over 2}, -{3\over 2} \end{array}$
Brane scalar	$({f 1}, [{f 1}, {f 2}])_{rac{1}{2}}$

The model has universality

Low energy physics is described by only one parameter θ_{H}

Dark Matter physics depends on n_F

Relic abundance
$$r_F = 4$$

GHU model has significant deviation and polarization dependence in forward-backward asymmetry

B model

Gut inspired Gauge-Higgs Unification model

 $SO(11) \supset SU(3)_C \times SO(5)_W \times U(1)_X$

TABLE III. Masses and widths of Z' bosons $(Z^{(1)}, \gamma^{(1)}, \text{ and } Z_R^{(1)})$ are listed for $\theta_H = 0.10$ and three $m_{KK} = 11, 13, 15$ TeV values in the upper table, and $m_{KK} = 13$ TeV and three $\theta_H = 0.11, 0.10, 0.09$ values in the lower table. $m_Z = 91.1876$ GeV and $\Gamma_Z = 2.4952$ GeV [81]. The column "Name" denotes each parameter set, and the column "Table" indicates the table summarizing the coupling constants in each set.

Name	θ_H (rad)	$m_{\rm KK}~({\rm TeV})$	z_L	k (GeV)	$m_{\gamma^{(1)}}$ (TeV)) $\Gamma_{\gamma^{(1)}}$ (TeV)	$m_{Z^{(1)}}$ (TeV)	$\Gamma_{Z^{(1)}}$ (TeV)	$m_{Z_R^{(1)}}$ (TeV)	$\Gamma_{Z_R^{(1)}}$ (TeV)	Table
B^L	0.10	11.00	1.980×10^{8}	6.933×10^{11}	8.715	2.080	8.713	4.773	8.420	0.603	5
В	0.10	13.00	3.865×10^{11}	1.599×10^{15}	10.20	3.252	10.20	7.840	9.951	0.816	4
\mathbf{B}^{H}	0.10	15.00	2.667×10^{15}	1.273×10^{19}	11.69	4.885	11.69	11.82	11.48	1.253	6
Name	θ_H (rad)	$m_{\rm KK}~({\rm TeV})$	z_L	$k \; (\text{GeV})$	$m_{\gamma^{(1)}}$ (TeV)) $\Gamma_{\gamma^{(1)}}$ (TeV)	$m_{Z^{(1)}}$ (TeV)	$\Gamma_{Z^{(1)}}$ (TeV)	$m_{Z_{p}^{(1)}}$ (TeV)	$\Gamma_{Z_{P}^{(1)}}$ (TeV)	Table
B^+	0.11	13.00	1.021×10^{14}	4.223×10^{17}	10.15	3.836	10.15	9.374	9.951	0.924	7
В	0.10	13.00	$3.865\!\times\!10^{11}$	1.599×10^{15}	10.20	3.252	10.20	7.840	9.951	0.816	4
B^-	0.09	13.00	$2.470\!\times\!10^9$	1.022×10^{13}	10.26	2.723	10.26	6.413	9.951	0.732	8

TABLE IV. Coupling constants of neutral vector bosons, Z' bosons, to fermions in units of $g_w = e/\sin\theta_W^0$ are listed for $\theta_H = 0.10$ and $m_{\rm KK} = 13.00$ TeV (B) in Table III, where $\sin^2 \theta_W^0 = 0.2306$. Their corresponding Z boson coupling constants in the SM are $(g_{Z_v}^L, g_{Z_v}^R) = (0.5703, 0), (g_{Z_e}^L, g_{Z_e}^R) = (-0.3065, 0.2638), (g_{Z_u}^L, g_{Z_u}^R) = (0.3944, -0.1748), (g_{Z_d}^L, g_{Z_d}^R) = (-0.4823, 0.0879)$. Their corresponding γ boson coupling constants are the same as those in the SM. When the value is less than 10^{-4} , we write 0.

		<i>f</i>	g^L_{Zf}	g_{Zf}^{R}	$g^L_{Z^{(1)}f}$	$g^{R}_{Z^{(1)}f}$	$g^L_{Z^{(1)}_R f}$	$g^R_{Z^{(1)}_Rf}$	$g^L_{\gamma^{(1)}f}$	$g^{R}_{\gamma^{(1)}f}$
	B-model	ν_e	0.5687 0.5687	0	3.2774 3.1207	0	-1.0322 -0.9852	0	0	0 0
Quark	$\frac{(3 \ A)_1}{(3 \ 1)^+} \frac{(3 \ 1)^-}{(3 \ 1)^-}$	ν_{τ}	0.5687	0	3.0165	0	-0.9539	0	0	0
Quark	$(\mathbf{J},\mathbf{I})_{\frac{1}{6}}$ $(\mathbf{J},\mathbf{I})_{-\frac{1}{3}}$ $(\mathbf{J},\mathbf{I})_{-\frac{1}{3}}$	e	-0.3058	0.2629	-1.7621	-0.0584	-1.0444	0	-2.7587	0.1071
Lepton	$({f 1},{f 4})_{-rac{1}{2}}$	$\begin{bmatrix} \mu \\ \tau \end{bmatrix}$	-0.3058	0.2629	-1.6218	-0.0584	-0.9909 -0.9652	0.0001	-2.5391	0.1071
Dark fermion	$({f 3},{f 4})_{rac{1}{\epsilon}} \ \ ({f 1},{f 5})_0^+ \ \ ({f 1},{f 5})_0^-$	и с	0.3934 0.3934	-0.1753 -0.1753	2.1951 2.1147	0.0390 0.0389	0.3415 0.3296	0 0	1.7807 1.7154	-0.0714 -0.0714
Brane fermion	$({f 1},{f 1})_0$	t	0.3938 0.4811	-0.1749 0.0876	1.7406 -2.6842	-0.3269 0.1162	0.2740 0.3297	-0.7395 -0.1801	1.4121 -0.8904	0.6017 -0.2113
Brane scalar	$(1,4)_{rac{1}{2}}$	s b	-0.4811 -0.4811	0.0876 0.0876	-2.5858 -2.1284	0.1460 0.2900	0.3182 0.2646	-0.2197 -0.4096	-0.8577 -0.7059 17	-0.2657 -0.5279

Action

$$\begin{split} S_{\text{bulk}}^{\text{gauge}} &= \int d^5 x \sqrt{-\det G} \left[-\operatorname{tr} \left(\frac{1}{4} F^{MN} F_{MN} + \frac{1}{2\xi} (f_{\text{gf}})^2 + \mathcal{L}_{\text{gh}} \right) \right], \\ F_{MN}^{(A)} &= \partial_M A_N - \partial_N A_M - ig_A \left[A_M, A_N \right], \\ f_{\text{gf}} &= z^2 \left\{ \eta^{\mu\nu} \mathcal{D}_{\mu}^{\text{c}} A_{\nu}^{\text{q}} + \xi k^2 z \mathcal{D}_z^{\text{c}} \left(\frac{1}{z} A_z^{\text{q}} \right) \right\}, \\ \mathcal{L}_{\text{gh}} &= \bar{c} \left\{ \eta^{\mu\nu} \mathcal{D}_{\mu}^{\text{c}} \mathcal{D}_{\nu} + \xi k^2 z \mathcal{D}_z^{\text{c}} \frac{1}{z} \mathcal{D}_z \right\} c \;, \end{split}$$

Action

$$S_{\text{bulk}}^{\text{quark}} = \int d^5 x \sqrt{-\det G} \sum_{\alpha=1}^3 \left\{ \overline{\Psi}_{(\mathbf{3},\mathbf{4})}^{\alpha} \mathcal{D}(c_{\alpha}) \Psi_{(\mathbf{3},\mathbf{4})}^{\alpha} + \overline{\Psi}_{(\mathbf{3},\mathbf{1})}^{+\alpha} \mathcal{D}(c_{D_{\alpha}^+}) \Psi_{(\mathbf{3},\mathbf{1})}^{+\alpha} \right. \\ \left. + \overline{\Psi}_{(\mathbf{3},\mathbf{1})}^{-\alpha} \mathcal{D}(c_{D_{\alpha}^-}) \Psi_{(\mathbf{3},\mathbf{1})}^{-\alpha} - m_{D_{\alpha}} \left(\overline{\Psi}_{(\mathbf{3},\mathbf{1})}^{+\alpha} \Psi_{(\mathbf{3},\mathbf{1})}^{-\alpha} + \overline{\Psi}_{(\mathbf{3},\mathbf{1})}^{-\alpha} \Psi_{(\mathbf{3},\mathbf{1})}^{+\alpha} \right) \right\}, \\ \mathcal{D}(c) = \gamma^A e_A^M \left(D_M + \frac{1}{8} \omega_{MBC} [\gamma^B, \gamma^C] \right) - c\sigma'(y) , \\ D_M = \partial_M - ig_S A_M^{SU(3)} - ig_A A_M^{SO(5)} - ig_B Q_X A_M^{U(1)} .$$

Effective potential

$$V_{\text{eff}}(\theta) = 2(3 - \xi^2)A_W(\theta) + (3 - \xi^2)A_Z(\theta) + 3\xi^2A_S(\theta) - 12A_{\text{top}}(\theta) - 12A_{\text{bottom}}(\theta) - 12n_FA_F(\theta) - 8n_NA_N(\theta),$$

$$A_p(\theta) \equiv \frac{(kz_L^{-1})^4}{(4\pi)^2} \int_0^\infty dq q^3 \ln\left[1 + \sum_{n=1}^2 Q_p^{(n)}(q) \cos(n\theta)\right],$$

 $\begin{aligned} Q_W^{(1)}(q) &= 0, \\ Q_W^{(2)}(q) &= -\frac{iq}{4z_L \hat{C}(q)\hat{S}(q) + iq}. \\ Q_Z^{(1)}(q) &= 0, \\ Q_Z^{(2)}(q) &= -\frac{iq(1 + \sin\phi^2)}{4z_L \hat{C}(q)\hat{S}(q) + iq(1 + \sin\phi^2)}. \\ Q_S^{(1)}(q) &= 0, \\ Q_S^{(2)}(q) &= -\frac{iq}{2z_L \hat{C}(q)\hat{S}(q) + iq}. \end{aligned}$

$$Q_N^{(1)}(q) = 0,$$

$$Q_N^{(2)}(q) = -\frac{2}{\hat{B}_0(q; c_V, m_V)},$$

 $\hat{B}_0(q;c_V,m_V) = \hat{C}_L(q;c_V+m_V)\hat{C}_R(q;c_V-m_V) + \hat{C}_L(q;c_V-m_V)\hat{C}_R(q;c_V+m_V) \\ + \hat{S}_L(q;c_V+m_V)\hat{S}_R(q;c_V-m_V) + \hat{S}_L(q;c_V-m_V)\hat{S}_R(q;c_V+m_V).$

 $Q_{top}^{(1)}(q) = -\frac{1}{2\hat{S}_L(q;c_t)\hat{S}_R(q;c_t) + 1},$ $Q_{top}^{(2)}(q) = 0,$ $Q_F^{(1)}(q) = \frac{1}{2\hat{S}_L(q;c_F)\hat{S}_R(q;c_F) + 1},$

 $Q_F^{(2)}(q) = 0.$

20

Effective potential

	Positive	Negative
π	Gauge boson	Dark Fermion(vector)
2π	Dark Fermion(spinor)	Top quark

Potential minimum

Parameters

n_N: number of $\Psi_{(1,5)}^{\pm\gamma}$ n_F: number of Ψ_{F}^{β} c_V: bulk mass of $\Psi_{(1,5)}^{\pm\gamma}$ C_F: bulk mass of Ψ_{F}^{β} m_V: pseudo-Dirac bulk mass of

Parameters

NN, **N**F, **C**V, **C**F, **M**V

Free parameters

$$\frac{dV_{\text{eff}}}{d\theta}\bigg|_{\theta=\theta_H} = 0$$
$$m_H = 125.1 \text{GeV}.$$

Asymmetry

LHC

Proton-Proton collision

- Composite particle
- Background

High energy - Peak (mass) Search

ILC

Electron-Positron collision

- Elementary particle
- Clean signal

Low energy - Asymmetry search

GHU : Heavy particle and Large asymmetry

Asymmetries

$$\begin{split} & \Delta_{d\sigma}^{f\bar{f}}(P_{e^-},P_{e^+},\cos\theta) \equiv \frac{\frac{d\sigma_{GHU}^{f\bar{f}}}{d\cos\theta}(P_{e^-},P_{e^+},\cos\theta)}{\frac{d\sigma_{SM}^{f\bar{f}}}{d\cos\theta}(P_{e^-},P_{e^+},\cos\theta)} - 1 \\ & A_{LR}^{f\bar{f}}(P_{e^-},P_{e^+},\cos\theta) \equiv \frac{\sigma^{f\bar{f}}(P_{e^-},P_{e^+},\cos\theta) - \sigma^{f\bar{f}}(-P_{e^-},-P_{e^+},\cos\theta)}{\sigma^{f\bar{f}}(P_{e^-},P_{e^+},\cos\theta) + \sigma^{f\bar{f}}(-P_{e^-},-P_{e^+},\cos\theta)} \\ & A_{FB}^{f\bar{f}}(P_{e^-},P_{e^+}) \equiv \frac{\sigma_{F}^{f\bar{f}}(P_{e^-},P_{e^+}) - \sigma_{B}^{f\bar{f}}(P_{e^-},P_{e^+})}{\sigma_{F}^{f\bar{f}}(P_{e^-},P_{e^+}) + \sigma_{B}^{f\bar{f}}(P_{e^-},P_{e^+})}, \\ & \sigma_{F}^{f\bar{f}}(P_{e^-},P_{e^+}) \equiv \sigma^{f\bar{f}}(P_{e^-},P_{e^+},[0,+\cos\theta_{\max}]), \\ & \sigma_{B}^{f\bar{f}}(P_{e^-},P_{e^+}) \equiv \sigma^{f\bar{f}}(P_{e^-},P_{e^+},[-\cos\theta_{\max},0]), \end{split}$$

 $P_{e^{\pm}} = +1$ corresponds to purely right-handed e^{\pm}

Asymmetries

$$\frac{d\sigma_{LR}^{f\bar{f}}}{d\cos\theta}(\cos\theta) = \frac{\beta s}{32\pi} \left\{ [1 + \beta^2 \cos^2\theta] \{ |Q_{e_L f_L}|^2 + |Q_{e_L f_R}|^2 \} + 2\beta\cos\theta \{ |Q_{e_L f_L}|^2 - |Q_{e_L f_R}|^2 \} + 8\frac{m_f^2}{s} [\operatorname{Re}(Q_{e_L f_L}Q_{e_L f_R}^*)] \right\},\\ \frac{d\sigma_{RL}^{f\bar{f}}}{d\cos\theta}(\cos\theta) = \frac{\beta s}{32\pi} \left\{ [1 + \beta^2 \cos^2\theta] \{ |Q_{e_R f_R}|^2 + |Q_{e_R f_L}|^2 \} + 2\beta\cos\theta \{ |Q_{e_R f_R}|^2 - |Q_{e_R f_L}|^2 \} + 8\frac{m_f^2}{s} [\operatorname{Re}(Q_{e_R f_L}Q_{e_R f_R}^*)] \right\},$$

$$A_{LR,FB}^{f\bar{f}}(\cos\theta) = \frac{\left[\sigma_{LR}^{f\bar{f}}(\cos\theta) - \sigma_{RL}^{f\bar{f}}(\cos\theta)\right] - \left[\sigma_{LR}^{f\bar{f}}(-\cos\theta) - \sigma_{RL}^{f\bar{f}}(-\cos\theta)\right]}{\left[\sigma_{LR}^{f\bar{f}}(\cos\theta) + \sigma_{RL}^{f\bar{f}}(\cos\theta)\right] + \left[\sigma_{LR}^{f\bar{f}}(-\cos\theta) + \sigma_{RL}^{f\bar{f}}(-\cos\theta)\right]}$$

Cross section

Left-Right Asymmetry

Forward-Backward Asymmetry

Left-Right Forward-Backward Asymmetry

