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Introduction Graphene and high energy physics

Graphene: suitable framework to study what is believed to be, as close
as possible, a quantum field in a curved space-time:

natural description of its electronic properties in terms of Dirac
pseudoparticles;

possibility to study quasi-relativistic particle behaviour at sub-light
speed regime;

curved space configurations: possibility of new direct observation
of quantum behaviour in the curved background of a solid state
system.
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Graphene honeycomb lattice
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1 Pristine graphene : single-state per site honeycomb lattice, far apart ions

H1 � t1
¸
xi,jy

c
:
i cj ;

electrons can tunnel to their first neighbor atoms;

robust massless formulation, protected, to a certain extent, by combination of
parity and time-reversal symmetry.
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Mass gaps Microscopic models

2 Haldane model : breaking model symmetries with second-neighbor
hopping terms plus on-site staggered potential �M

H � H1 �H2 � H1 � t2
¸
xi,jy2

eiϕαij c
:
i cj � εiM

¸
i

c
:
i ci , εi � �1 ;

second-neighbor hopping terms with unimodular phase factor, the phase sign
depending on the ‘chirality’ of the electron path;

parity breaking terms that spoil sublattices equivalence;

fermion masses in the two inequivalent valleys:

mK �M� 3
?
3 t2 sinϕ , mK’ �M� 3

?
3 t2 sinϕ .
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Geometrical top-down approach Holography

Holographic correspondence

Infer properties of a strongly coupled D dimensional
quantum models defined at the boundary from a classical
D� 1 dimensional (AdS) gravity theory in the bulk;

at low energy there is a one-to-one correspondence between quantum operators in the
boundary and fields of the bulk gravity theory;

boundary conditions for gravity fields inD�1 dimensional act as sources for operators
of theD dimensional QCFT.

1 Shot : write down aD � 4 (super)gravity model whoseD � 3 boundary
features an effective theory for a spin-1/2 fermion defined on a curved
geometry;

2 check if the generatedD � 3 spin-1/2 fermion can be identified with Dirac
electronic charge carriers in graphene.
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The model Step-by-step procedure

The procedure in a nutshell [JHEP 01 (2020) 084] :

start from a maximally supersymmetric AdS4 vacuum of an N–extended
supergravity and consider fluctuations on this background;

write a covariant form for the Maurer-Cartan equations at the UV-boundary
located at radial infinity;

consider the boundary limit, defining the correct form for the boundary
vielbein, spinors and connections;

the resulting D � 3 world volume describes a generalized AVZ model
featuring a local NYW symmetry.
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Geometrical top-down approach

AVZ model

Effective theory in 2+1 dimensions for a spin-1/2 fermion χ;

generically defined on a curved geometry and minimally coupled to the background
gravity;

the system exhibits an unconventional form of supersymmetry based on a suitable
graded Lie algebra;

Dirac fermion fields of the theory may describe the wave functions of the π-electrons
in graphene at the Dirac points K, K’.

�X The AVZ model can be (holographically) realized as the boundary theory of aD � 4
supergravity for an AdS4 spacetime;

�X an explicit curved space Dirac equation for the charge carriers is obtained;

�X fermion masses depend on the geometrical parameters (torsion) of the considered
spacetime.
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The AVZ model

Unconventional model :

peculiar ansatz for the fermionic gauge fields

ΨA � i γi e
i χA ,

expressed in terms of the vielbein and spin 1/2 fields χ .

The structure of the algebra is given in terms of a connection A � ϑi bEi satisfying
Maurer-Cartan equations dA� A^ A � 0 ;

the construction leads to the description of a propagating charged fermion satisfying
a Dirac equation;

the model can describe graphene electronic charge carriers in the vicinity of Dirac
points, in a lattice with non-vanishing curvature and torsion.
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The AVZ model Results from geometry

We started from an N-extended supergravity model featuring an AdS4 vacuum
withOSppN|4q symmetry and then related it to an OSppp, 2q��OSppq, 2q� theory
at the boundary, with p� q � N .

Let us now restrict to the p � q case :

f parity is a discrete symmetry of the whole theory;

f the AdS4 boundary is reached in the limit rÑ8 , where the leading term of the
D � 4 vielbein is defined in terms of theD � 3 vielbein

Ei
�
� � 1

2

�r
`

	�1
Ei � . . . with Ei � f ei ;

f the� and� sectors of the theory can be naturally interpreted as related to the
graphene Dirac points K, K’ ;
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The AVZ model Geometric results

f the torsion can be explicitly written as

T i� �D
Ω
ei � βei � τ

�
εijkej ^ ek ,

where τ
�
� τ	 2

f

`
is written in terms of geometric quantities;

f the Dirac equation has the form

{Dχ
�
� �3

2
i τ
�
χ
�

ñ m
�
� 3

2
τ
�
� 3

2
τ	 3

f

`
;

f the choice for the boundary spin connection can be labeled by λ P R that, in turns,
yields for the τ parameter

τ � λ
`
pf� 1q ñ τ

�
� 1
`
pλpf� 1q 	 fq .

[JHEP 01 (2020) 084]
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The model Making contact with microscopic formulation

If we describe the single electron wave function of graphene in terms of a
two-component Dirac spinor, ψ �

b
2
`
U�1 χ , one finds:

fermion masses explicitly depend on the geometry (torsion) of the three-dimensional
spacetime m

�
� 3

2 τ� ;

well-established top-down approach, in that the effectiveD � 3 theory derived at the
boundary originates from a well defined effective supergravity in the bulk;

the fermions of the theory may describe the physics of graphene charge carriers at the
Dirac points K, K’; in particular, it is possible to generate Semenoff and Haldane-type
effective masses:

m
�
� 3

2
τ
�
� 3

2
τ	 3

f

`
ô mK,K’ �M	 3

?
3 t2 sinϕ

=ñ M Ø 3
2
τ ,

?
3 t2 sinϕ Ø f

`
.
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Conclusions

1 We have seen how the extension of unconventional supersymmetry to the
superalgebra can be instrumental in describing the electronic properties of
graphene-like systems in the K and K’ valleys and thus physical situations in
which the symmetry between them is broken.

2 Top down approach: the effective D � 3 model that we derive at the
boundary of AdS4 originates from a well defined supergravity theory defined
in the bulk.

3 Identification between Haldane parameters and geometrical quantities
suggests a relation between the ratio f{` and the Berry phase parameters.

4 The embedding of the effective description in an N-extended
four-dimensional supergravity sets the stage of a holographic analysis
which will be pursued in a future work.
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Thank you for listening!
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