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Abstract
Assuming that the degrees of freedom of a black hole are finite in number and of fermionic nature, we naturally obtain, within a second-quantized toy model
of the evaporation, that the Bekenstein bound is a consequence of the Pauli exclusion principle for these fundamental degrees of freedom. We show that
entanglement, Bekenstein and thermodynamic entropies of the black hole all stem from the same approach, based on the entropy operator whose structure is the
one typical of Takahashi and Umezawa’s Thermofield Dynamics. We then evaluate the von Neumann black hole–environment entropy and noticeably obtain a
Page-like evolution. We finally show that this is a consequence of a duality between our model and a quantum dissipative-like fermionic system.

Introduction
In Ref. [1], Bekenstein’s argument that a black hole (BH) reaches the maximal entropy at disposal of a phys-
ical system [2] leads to two main proposals: i) the degrees of freedom (dof) responsible for the BH entropy
have to take into account both matter and spacetime and hence must be of a new, more fundamental nature
than the dof we know, here we call such dof “Xons” ii) the Hilbert space H of the Xons of a given BH is
necessarily finite dimensional [3].

Here we reverse that logic [4]. Namely, we start off by supposing that in a BH only free Xons exist, and we
suppose that they are finite in number and fermionic in nature. This amounts to have a finite dimensional H.
With these assumptions, we show here that BH evaporation is a dynamical mechanism producing a maximal
entanglement entropy, equal to the initial entropy of the BH.

Hilbert space of Xons and Bekenstein bound
We assume that the fundamental dof are fermionic. As a consequence, each quantum level can be filled by no
more than one fermion. This assures that the Hilbert space H of physical states with a finite number of levels
is finite dimensional.

Now, say N is the total number of quantum levels available to the BH. The evaporation consists of the
following, steady process: N → (N − 1) → (N − 2) → · · · . That is, the number of free Xons steadily
decreases, in favor of the Xons that, having evaporated, are arranged into quasi-particles and the spacetime
they live in. One might think of a counter that only sees free Xons, hence keeps clicking in one direction as
the BH evaporates, till its complete stop.

In this picture: i) there is no pre-existing time, because the natural evolution parameter is the average number
of free Xons; and ii) there is no pre-existing space to define the regions inside and outside the BH, because a
distinction of the total system into two systems, say environment (I) and BH (II), naturally emerges in the way
just depicted. With this in mind, in what follows we shall nonetheless refer to the system I as outside, and to
system II as inside. The Hilbert space of physical states is then built as a subspace of a larger tensor product
(kinematical) Hilbert space

H ⊆ HI ⊗HII . (1)

We introduce fermionic ladder operators{
χτn, χ

†
τ ′n′

}
= δτ,τ ′ δnn′ , (2)

with n, n′ = 1, . . . , N , τ = I, II, and all other anticommutators equal to zero. Then, we introduce the
simplified notation

an ≡ χI n , bn ≡ χII n . (3)

We initialize the system in a pure state representing the BH at the beginning of the evaporation process, with
all the slots occupied by free Xons. In the final state they will not be free Xons left, as they all recombined to
form fields and spacetime.

A toy-model corresponding to such boundary conditions is defined by the entangled state

|Ψ(σ)〉 =

N∏
i=1

∑
ni=0,1

Ci(σ)
(
a
†
i

)ni (
b
†
i

)1−ni
|0〉I ⊗ |0〉II , (4)

which describes the state of the system, with Ci = (sin σ)ni (cosσ)1−ni. The parameter σ can be seen as an
interpolating parameter, which describes the evolution of the system, from σ = 0, corresponding to the start
of the evaporation of the BH, till σ = π/2, corresponding to its complete evaporation.

The Hilbert space of physical states has dimension

Σ ≡ dimH = 2N . (5)

In order to quantify entanglement at each stage, we define the entropy operator for environment modes as in
Thermofield dynamics (TFD) [5]

SI(σ) = −
N∑
n=1

(
a
†
n an ln sin2 σ + an a

†
n ln cos2 σ

)
. (6)

We also define the entropy operator for BH modes, in a rather unconventional way

SII(σ) = −
N∑
n=1

(
b
†
n bn ln cos2 σ + bn b

†
n ln sin2 σ

)
. (7)

Then

SI(σ) = 〈SI(σ)〉σ = −N
(

sin2 σ ln sin2 σ + cos2 σ ln cos2 σ
)

= 〈SII(σ)〉σ = SII(σ) ,

where 〈. . .〉σ ≡ 〈Ψ(σ)| . . . |Ψ(σ)〉. Therefore the averages of the operators coincide, as it must be for a bipar-
tite system. This entropy is the von Neumann entropy quantifying the entanglement between environment and
BH [4]. Remarkably, it has a behavior in many respect similar to that of the Page curve [6]. The maximum
value is

Smax = N ln 2 = ln Σ , (8)

so that
Σ = eSmax . (9)

Then, in our model dimH is related to the maximal entanglement entropy of the environment with the BH.
This happens exactly when the modes have half probability to be inside and half probability to be outside the

BH, and then a large amount of bits are necessary to describe the system. The system has thus an intrinsic way
to know how big is the physical Hilbert space, hence how big is the BH at the beginning of the evaporation:
when the maximal entanglement is reached, then that value of the entropy, Smax, tells how big was the original
BH. Hence Smax must be some function ofM0, withM0 the original mass of the BH. This is the Bekenstein
bound in this picture, obtained as a consequence of the finiteness of the fermionic fundamental dof, hence of
a Pauli principle.

How the entropy of the BH, that should always decrease, and the entropy of the environment, that should
always increase actually evolve in our model? It is important to stress that, in our formalism, the full kine-
matical Hilbert spaces associated to both sides have fixed dimension (dimHI = dimHII = 2N ), while only a
subspaceH ⊆ HI ⊗HII such that dimH = 2N is the one of physical states. Note thatH cannot be factorized
and this is the origin of BH/environment entanglement.

Nonetheless, one could think that the physical Hilbert spaces of the two subsystems have to take into account
only the number of modes truly occupied, at any given stage of the evaporation. Hence, the actual dimensions
would be 2NI

(σ), and 2NII
(σ), where one easily finds that the mean number of modes on |Ψ(σ)〉 is

NI(σ) = N sin2 σ , NII(σ) = N −NI(σ) = N cos2 σ . (10)

It becomes clear that σ is, in fact, a discrete parameter, essentially counting the diminishing number of free
Xons. When we take this view it is natural to consider the partition

2N = 2NII
(σ) × 2NI

(σ) ≡ n×m , (11)

with n = 2N , 2N−1, . . . , 1, and m = 1, . . . , 2N−1, 2N , while σ runs in discrete steps in the interval [0, π/2]. It
is then natural to define the Bekenstein and the environment entropy as

SBH ≡ lnn = N ln 2 cos2 σ , Senv ≡ lnm = N ln 2 sin2 σ . (12)

It holds the inequality SI ≤ SBH + Senv = Smax. In figure, the three entropies are plotted for N = 1000.
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Number fluctuations, which make necessary to invoke the entire Hilbert space H at each stage, represent a
measure of entanglement as shown by a direct computation:

∆NI(σ) = ∆NII(σ) =

√
N sin(2σ)

2
. (13)

Duality with TFD
Let us perform the canonical transformation

An = an , Bn = b
†
n . (14)

The vacua in the new representation satisfy An |0〉A = Bn |0〉B = 0. One can check that

|0〉A = |0〉I , |0〉B = |11 12 . . . 1N〉II . (15)

It follows that

|Ψ(σ)〉 =

N∏
n=1

(
cosσ + sinσ A

†
nB
†
n

)
|0〉A ⊗ |0〉B . (16)

This has the form of the thermal vacuum, introduced in TFD [5]. The physical picture here is that, when
the system evolves, a pair of A and B particles is created. The B-modes enter into the BH, annihilating BH
modes, while the A-modes form the environment.
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