

# Higgs differential cross-section in Hyy and H4 $\ell$ and mass measurement in H4 $\ell$

Antoine Laudrain (JGU, Mainz) On behalf of the ATLAS collaboration

ICHEP 2020 — Higgs parallel session (2) — 30/07/2020



JOHANNES GUTENBERG UNIVERSITÄT MAINZ









# H4<sup>l</sup> and Hyy differential cross-sections

## H4 $\ell$ : paper accepted in EPJC, <u>arXiv:2004.03969</u>. Final Run-2 result!

Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS

HVY: <u>ATLAS-CONF-2019-029</u> (preliminary).





# Welcome to the Higgs precision measurements el

### Fiducial cross-sections

- Largely model-independent.
- Targets **decay side**.
- Combination needs extrapolation.

### **Total phase-space**

Fiducial phase-space: close to...

... detector/analysis acceptance

## **Interpretations: BSM physics?**

### Pseudo-observables

### Effective Field Theory

Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS

### Measurements

### Simplified Template Cross-Sections (STX

Reduce theory systematics, more model-depend Targets production side.

Common to all decay channels: easy to combine Easy interpretation: isolate BSM regions.



**Model-depe** 

. . .

k-framework

| ra!                      |
|--------------------------|
|                          |
| <u>XS)</u><br>dent.      |
| <b>e</b> .               |
| Η                        |
| $p_T^H$ [200, $\infty$ ] |
|                          |
| ndency                   |



# Welcome to the Higgs precision measurements el

### Fiducial cross-sections

- Largely model-independent.
- Targets **decay side**.
- Combination needs extrapolation.

### **Total phase-space**

Fiducial phase-space: close to...

... detector/analysis acceptance

## **Interpretations: BSM physics?**

Pseudo-observables

Effective Field Theory

Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS

### Measurements

### Simplified Template Cross-Sections (ST)

Reduce theory systematics, more model-dependence Targets production side. Common to all decay channels, few to combine Easy interpretation: isolation regions.  $s_{p+1}$ 





k-framework

ICHEP 2020 - 30/07/2020

| ts era!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ns (STXS)<br>depsndent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Example 1</b> Solution $V(t) \neq qq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \geq 2 \text{-jet} $ $ m_{jj} [350, \infty] $ $ p_T^H [0, 200] \qquad m_{jj} $ $ m_{jj} $ |
| Model-dependency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



. . .

# Overview of analyses



- Fully reconstructed final state! Good precision! Fully reconstructed final state! Good precision!  $\bullet$
- **4 low-p<sub>T</sub> isolated leptons** (electrons / muons)
- Main **background**: **qq→ZZ continuum**, shape from MC, norm. from data sideband.
- BR ~ 0.0124%, S/B ~ 2.

Antoine Laudrain (JGU-Mainz)



- Two isolated photons.
- Main **background**: **yy continuum**, estimated from data sideband.
- BR ~ 0.2%, S/B < 0.1.

**Higgs differential XS and mass measurement in ATLAS** 





# Differential cross-section measurements

### Input distribution



Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS



# Differential cross-section measurements

### Input distribution



Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS



# Differential cross-section measurements

Unfold

### **Input distribution**



Antoine Laudrain (JGU-Mainz)

**Higgs differential XS and mass measurement in ATLAS** 

### **Fiducial XS**

### **Then provide higher-level interpretations.**





# H42 & Hyy differential XS: observables H→ZZ→4ℓ H-→vv 20 observables 6 observables (preliminary) **Higgs system** • $p_T(\gamma\gamma), y_{\gamma\gamma}$ . **Jet variables** N<sub>jets</sub>, рт(j<sub>1</sub>), dijet invariant mass, angular separation ( $\phi$ , $\eta$ ). Higgs + 1 or 2 jets system **Double differential cross-section**

- p<sub>T</sub>(4ℓ), y<sub>4ℓ</sub>,
- m<sub>12</sub>, m<sub>34</sub>,
- 5 final-state angular variables.  $\bullet$



- N<sub>jets</sub>, N<sub>b-jets</sub>,
- $p_T(j_1), p_T(j_2),$
- dijet invariant mass, angular separation ( $\phi$ ,  $\eta$ ).  $\bullet$

 $p_T$  and invariant mass.

8 double differential observables.  $\bullet$ 

Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS





Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS





# H42 & Hyy differential XS: examples

### N<sub>jets</sub>: sensitive to production mode composition



Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS



# H4 $\ell$ & Hyy differential XS: probing Higgs-charm Yukawa ( $\kappa_c$ )

H-→ZZ-→4ℓ



- Low-pt:
- <u>High-p⊤</u>: lacksquareparticles in ggF loop

### H4*ℓ*: [-7.5, 9.3]

Antoine Laudrain (JGU-Mainz)

sensitive to c/b-Yukawa

sensitive to new heavy

к<sub>с</sub> @ 95% CL



### Hγγ: [-19, 24] (shape only)

### Higgs differential XS and mass measurement in ATLAS







# H4<sup>2</sup> differential XS: Pseudo-Observable interpretation



Antoine Laudrain (JGU-Mainz)



- Starts from m<sub>12</sub> vs m<sub>34</sub> double differential XS.
- Probes "pseudo-observables" (PO): contact terms between H, Z and  $\ell_L/\ell_R$

### No significant deviation, good SM compatibility

Higgs differential XS and mass measurement in ATLAS







# Hyy differential XS: EFT interpretation

### Interpretation in SILH/SMEFT basis.

- Dimension-6 terms:  $\mathcal{L}_{eff}^{SMEFT} \supset$  $\mathcal{L}_{\mathrm{EFT}} = \mathcal{L}_{\mathrm{SM}} + \sum \mathcal{O}_i \cdot c_i / \Lambda^2$



Antoine Laudrain (JGU-Mainz)

**Higgs differential XS and mass measurement in ATLAS** 

ICHEP 2020 - 30/07/2020



## First Higgs mass measurement using full Run-2 data!

ATLAS-CONF-2020-005 (preliminary)

Antoine Laudrain (JGU-Mainz)

**Higgs differential XS and mass measurement in ATLAS** 

# H42 mass measurement





# Key elements of the H4<sup>2</sup> mass analysis

- In mass region 115-130 GeV : 314 events observed with **S:B** ratio = 2:1 (316 expected).
- Recovering **FSR**: 4% of events  $\rightarrow$  improves resolution by **1%**.
- **Leading Z mass constraint**  $\rightarrow$  **17%** improvement.



Higgs differential XS and mass measurement in ATLAS



# Key elements of the H4<sup>2</sup> mass analysis

- In mass region 115-130 GeV : 314 events observed with **S:B** ratio = 2:1 (316 expected).
- Recovering **FSR**: 4% of events  $\rightarrow$  improves resolution by **1%**.
- **Leading Z mass constraint**  $\rightarrow$  **17%** improvement.



Antoine Laudrain (JGU-Mainz)

**Higgs differential XS and mass measurement in ATLAS** 

>⊕ 180 **TLAS** Preliminary  $\begin{array}{l} H \rightarrow ZZ^{*} \rightarrow 4I \\ \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1} \end{array}$ 160 Events/2. 120 100 80 60 40 20

• Signal purity enhanced with BDT:

• Discriminate Higgs signal vs ZZ\* continuum.

• 4 BDT bins  $\rightarrow$  2% improvement.

Total 16 analysis categories: 4 BDT bins x 4 final states.

80

100

ICHEP 2020 - 30/07/2020

120



 $Z(Z^*)$ 

140

tXX. VVV

Z+iets. tt

Uncertaint



# Key elements of the H4<sup>2</sup> mass analysis



### Antoine Laudrain (JGU-Mainz)

GeV

22

Events /

Higgs differential XS and mass measurement in ATLAS



# H4<sup>1</sup> mass measurement: result & comparisons

### • This measurement:

### mH = 124.92 ± 0.21 (±0.19 stat ±0.08 sys)

- Good compatibility between channels.
- Largely statistically dominated.



Higgs differential XS and mass measurement in ATLAS

ICHEP 2020 - 30/07/2020

# H4<sup>l</sup> mass measurement: result & comparisons



Antoine Laudrain (JGU-Mainz)

**Higgs differential XS and mass measurement in ATLAS** 

| Systematic Uncertainty       | Impact (G |
|------------------------------|-----------|
| Muon momentum scale          | +0.08,-0  |
| Electron energy scale        | ±0.02     |
| Muon momentum resolution     | ±0.01     |
| Muon sagitta bias correction | ±0.01     |

ICHEP 2020 - 30/07/2020





Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS

# H4<sup>1</sup> mass measurement: result & comparisons

ICHEP 2020 - 30/07/2020

# Conclusion



- Improves last result by 40%.
- Statistically dominated.
- K<sub>c</sub> @ 95% CL: [-7.5, 9.3].
- Interpretation with pseudo-observables.

### No significant deviation, well compatible with Standard Model.

Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS

10% precision level

### **Differential cross-sections**

Ηγγ

• Ηγγ using all Run-2 data:

- σ<sub>fid</sub> = 65.2 ± 4.5 (stat) ± 5.6 (syst) ± 0.3 (theo) fb.
- SM:  $\sigma_{fid} = 63.6 \pm 3.3$  fb.
- Best Hyy up to now.
  - Inclusive XS: now systematics-dominated.
- κ<sub>c</sub> @ 95% CL: [-19, 24] (shape only).
- Interpretation with EFT (SILH/SMEFT).





# Conclusion



## **Differential cross-sections**

### H4*ℓ* final Run-2 result:

- $\sigma_{fid} = 3.28 \pm 0.30 \text{ (stat)} \pm 0.11 \text{ (syst) fb.}$
- SM:  $\sigma_{fid} = 3.41 \pm 0.18$  fb.
- Improves last result by 40%.
- Statistically dominated.
- к<sub>с</sub> @ 95% CL: [-7.5, 9.3].
- Interpretation with pseudo-observables.

### No significant deviation, well compatible with Standard Model.

# Higgs mass measurement in H4<sup>l</sup> channel

- First Higgs mass measurement using full Run-2 dataset:

  - **Compatible with previous measurements.**

Antoine Laudrain (JGU-Mainz)

**Higgs differential XS and mass measurement in ATLAS** 

10% precision • level

Ηγγ

Ηγγ using all Run-2 data:

- $\sigma_{fid} = 65.2 \pm 4.5 \text{ (stat)} \pm 5.6 \text{ (syst)} \pm 0.3 \text{ (theo) fb.}$
- SM:  $\sigma_{fid} = 63.6 \pm 3.3$  fb.
- Best Hyy up to now.
  - Inclusive XS: now systematics-dominated.
- κ<sub>c</sub> @ 95% CL: [-19, 24] (shape only).
- Interpretation with EFT (SILH/SMEFT). ullet

 $mH = 124.92 \pm 0.21 (0.19 \text{ stat})$ 

15% better than previous ATLAS measurement & same precision as CMS H4? (but with more data).



### Stay tuned: other ATLAS SM single Higgs talks @ ICHEP !!

- Higgs  $\rightarrow$  bosons:
  - This talk:
    - **Differential cross-sections** in H4 $\ell$  and Hyy.
    - **Mass measurement** in  $H4\ell$ .
  - Production couplings and STXS: see Liza Mijovic's in a few minutes.
- Higgs  $\rightarrow$  fermions:
  - $H \rightarrow bb / H \rightarrow cc$ : see <u>Marco Battaglia's talk yesterday</u>.
  - H→TT: see Christian Grefe's talk in a few minutes.
  - **ttH**: see <u>Jelena Jovicevic's talk after the break</u>.

### Higgs combination: see Matthew Klein's talk after the break.

Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS









# BACKUP



### More questions?

# antoine.laudrain [at] cern.ch





Antoine Laudrain (JGU-Mainz)



Higgs differential XS and mass measurement in ATLAS





Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS







Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS





Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS







Antoine Laudrain (JGU-Mainz)



Higgs differential XS and mass measurement in ATLAS





Antoine Laudrain (JGU-Mainz)



**Higgs differential XS and mass measurement in ATLAS** 







Antoine Laudrain (JGU-Mainz)



Higgs differential XS and mass measurement in ATLAS





Antoine Laudrain (JGU-Mainz)



Higgs differential XS and mass measurement in ATLAS





Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS









### Antoine Laudrain (JGU-Mainz)



Higgs differential XS and mass measurement in ATLAS



# Hγγ differential XS: data/MC compatibility



Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS

| $p(\chi^2)$ with      |
|-----------------------|
| Default MC Prediction |
| 44%                   |
| 68%                   |
| 77%                   |
| 96%                   |
| 82%                   |
| 75%                   |



# Kb and Kc results in H4 $\ell$ and H $\gamma\gamma$





Antoine Laudrain (JGU-Mainz)

# Kb VS Kc in H4l

| ameter best-fit value | 95% confidence interval |
|-----------------------|-------------------------|
| $\kappa_c = -1.1$     | $[-11.7, \ 10.5]$       |
| $\kappa_b = 0.28$     | $[-3.21, \ 4.50]$       |
| $\kappa_c = 0.66$     | $[-7.46, \ 9.27]$       |
| $\kappa_b = 0.55$     | $[-1.82, \ 3.34]$       |

### Higgs differential XS and mass measurement in ATLAS





Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS

 $K_b VS K_c in H\gamma\gamma$ 











# H4<sup>2</sup> differential cross-sections and interpretations



# H4<sup>l</sup> phase space definition: analysis

| Muons                                                           | $p_{\rm T} > 5 { m GeV},  n  < 2.7$                                       |  |  |  |  |
|-----------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
| Electrons                                                       | $E_{\rm T} > 7 {\rm GeV},   \eta  < 2.47$                                 |  |  |  |  |
| Jets                                                            | $p_{\rm T} > 30 {\rm GeV},   \eta  < 4.5$                                 |  |  |  |  |
| $\mathbf{Le}$                                                   | pton selection and pairing                                                |  |  |  |  |
| Lepton kinematics                                               | $p_{\rm T} > 20, 15, 10 { m ~GeV}$                                        |  |  |  |  |
| Leading pair $(m_{12})$                                         | SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $                     |  |  |  |  |
| Subleading pair $(m_{34})$                                      | Remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $           |  |  |  |  |
| Event selection (at most one Higgs boson candidate per channel) |                                                                           |  |  |  |  |
| Mass requirements                                               | 50 GeV $< m_{12} < 106$ GeV and $m_{\text{threshold}} < m_{34} < 115$ GeV |  |  |  |  |
| Lepton separation:                                              | $\Delta R(\ell_i, \ell_j) > 0.1$                                          |  |  |  |  |
| Lepton/Jet separation                                           | $\Delta R(\mu_i(\dot{e_i}), \text{jet}) > 0.1(0.2)$                       |  |  |  |  |
| $J/\psi$ veto                                                   | $m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs                     |  |  |  |  |
| Impact parameter                                                | $ d_0 /\sigma(d_0)$ ; 5 (3) for electrons (muons)                         |  |  |  |  |
| Mass window                                                     | $105~GeV < m_{4\ell} < 160~{\rm GeV}$                                     |  |  |  |  |
| Vertex selection:                                               | $\chi^2/N_{\rm dof}$ ; 6 (9) for $4\mu$ (other channels)                  |  |  |  |  |
| If extra lepton with $p_{\rm T} > 12 {\rm ~GeV}$                | Quadruplet with largest matrix element (ME) value                         |  |  |  |  |

### Higgs differential XS and mass measurement in ATLAS



# H4<sup>l</sup> phase space definition: fiducial

| Leptons and jets                                   |                                                                 |  |  |  |  |  |
|----------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|--|
| Leptons                                            | $p_{\rm T} > 5 { m ~GeV},  \eta  < 2.7$                         |  |  |  |  |  |
| Jets                                               | $p_{\rm T} > 30 \text{ GeV},  y  < 4.4$                         |  |  |  |  |  |
| $\mathbf{Lep}$                                     | ton selection and pairing                                       |  |  |  |  |  |
| Lepton kinematics                                  | $p_{\rm T} > 20, 15, 10 {\rm ~GeV}$                             |  |  |  |  |  |
| Leading pair $(m_{12})$                            | SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $           |  |  |  |  |  |
| Subleading pair $(m_{34})$                         | remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $ |  |  |  |  |  |
| Event selection (at most one quadruplet per event) |                                                                 |  |  |  |  |  |
| Mass requirements                                  | 50 GeV < $m_{12}$ < 106 GeV and 12 GeV < $m_{34}$ < 115 GeV     |  |  |  |  |  |
| Lepton separation                                  | $\Delta R(\ell_i, \ell_j) > 0.1$                                |  |  |  |  |  |
| Lepton/Jet separation                              | $\Delta R(\ell_i, \text{jet}) > 0.1$                            |  |  |  |  |  |
| $J/\psi$ veto                                      | $m(\ell_i, \ell_j) > 5 \text{ GeV}$ for all SFOC lepton pairs   |  |  |  |  |  |
| Mass window                                        | $105 \ \text{GeV} < m_{4\ell} < 160 \ \text{GeV}$               |  |  |  |  |  |
| If extra lepton with $p_{\rm T} > 12 {\rm ~GeV}$   | Quadruplet with largest matrix element value                    |  |  |  |  |  |

Higgs differential XS and mass measurement in ATLAS



# H4ł systematics

| Observable                                                                    | Stat.    | Syst.    | Dominant systematic components [%] |         |        |            |            |          |        |
|-------------------------------------------------------------------------------|----------|----------|------------------------------------|---------|--------|------------|------------|----------|--------|
|                                                                               | unc. [%] | unc. [%] | Lumi.                              | $e/\mu$ | Jets   | Other Bkg. | $ZZ^*$ Th. | Sig. Th. | Comp.  |
| $\mathrm{d}\sigma \ / \ \mathrm{d}p_{\mathrm{T}}^{4\ell}$                     | 20-46    | 2-8      | 1.7                                | 1-3     | 1 - 2  | < 0.5      | 1 - 6      | 1 - 2    | < 1    |
| d $\sigma$ / d $m_{12}$                                                       | 12 - 42  | 3-6      | 1.7                                | 2 - 3   | < 1    | < 0.5      | 1 - 2      | 1 - 2    | < 1    |
| d $\sigma$ / d $m_{34}$                                                       | 20 - 82  | 3 - 12   | 1.7                                | 2 - 3   | < 1    | 1 - 2      | 1 - 8      | 1 - 3    | < 1    |
| $\mathrm{d}\sigma \;/\; \mathrm{d} y_{4\ell} $                                | 22 - 81  | 3-6      | 1.7                                | 2 - 3   | < 1    | < 0.5      | 1 - 5      | 1-3      | < 1    |
| $\mathrm{d}\sigma \; / \; \mathrm{d}  \!\cos 	heta^{*} $                      | 23 - 113 | 3-6      | 1.7                                | 2 - 3   | < 1    | 1 - 2      | 1 - 7      | 1-3      | < 0.5  |
| d $\sigma \ / \ {\rm d} \cos \theta_1$                                        | 23 - 44  | 3-6      | 1.7                                | 2-3     | < 1    | < 0.5      | 1-3        | 1 - 2    | < 1    |
| d $\sigma$ / dcos $\theta_2$                                                  | 22 - 39  | 3-6      | 1.7                                | 2 - 3   | < 1    | < 0.5      | 1 - 3      | 1 - 3    | < 1    |
| $\mathrm{d}\sigma$ / $\mathrm{d}\phi$                                         | 20 - 29  | 2 - 5    | 1.7                                | 2 - 3   | < 1    | < 0.5      | 1 - 3      | 1 - 2    | < 0.5  |
| d $\sigma$ / d $\phi_1$                                                       | 22 - 33  | 3-6      | 1.7                                | 2 - 3   | < 1    | < 0.5      | 1 - 2      | 1-3      | < 0.5  |
| ${ m d}\sigma$ / ${ m d}N_{ m jets}$                                          | 15 - 37  | 6 - 14   | 1.7                                | 1 - 3   | 4–10   | < 0.5      | 1 - 4      | 3 - 7    | 1 - 4  |
| $\mathrm{d}\sigma$ / $\mathrm{d}N_{b-\mathrm{jets}}$                          | 15-67    | 6 - 15   | 1.7                                | 1 - 3   | 4-5    | 1-3        | 1 - 2      | 3-9      | 1 - 4  |
| ${ m d}\sigma$ / ${ m d}p_{ m T}^{ m lead.~jet}$                              | 15 - 34  | 3-13     | 1.7                                | 1 - 3   | 4-10   | < 0.5      | 1 - 2      | 1 - 5    | < 0.5  |
| ${ m d}\sigma$ / ${ m d}p_{ m T}^{ m sublead.~jet}$                           | 11 - 67  | 5 - 22   | 1.7                                | 1 - 3   | 2-12   | < 1        | 1-3        | 2 - 15   | 1 - 5  |
| $\mathrm{d}\sigma$ / $\mathrm{d}m_{\mathrm{jj}}$                              | 11 - 50  | 5 - 18   | 1.7                                | 1 - 3   | 1 - 11 | < 0.5      | 1 - 3      | 2 - 15   | 1 - 2  |
| $\mathrm{d}\sigma$ / $\mathrm{d}\eta_{jj}$                                    | 11 - 57  | 5 - 17   | 1.7                                | 1 - 3   | 2 - 10 | < 0.5      | 1 - 2      | 2 - 14   | 1-4    |
| $\mathrm{d}\sigma$ / $\mathrm{d}\phi_{jj}$                                    | 11 - 50  | 4 - 18   | 1.7                                | 1 - 3   | 2-9    | < 0.5      | 1 - 3      | 2 - 14   | 1 - 6  |
| $\mathrm{d}\sigma$ / $\mathrm{d}m_{4\ell\mathrm{j}}$                          | 15 - 66  | 4 - 19   | 1.7                                | 1 - 3   | 3-9    | < 0.5      | 1 - 6      | 3 - 14   | 1-8    |
| $\mathrm{d}\sigma$ / $\mathrm{d}m_{4\ell\mathrm{jj}}$                         | 11 - 182 | 5 - 67   | 1.7                                | 1-3     | 4 - 24 | < 0.5      | 1 - 5      | 2 - 35   | 1 - 9  |
| $\mathrm{d}\sigma$ / $\mathrm{d}p_{\mathrm{T}}^{4\ell\mathrm{j}}$             | 15 - 76  | 6-13     | 1.7                                | 1 - 3   | 2-8    | < 1        | 1 - 5      | 3-9      | 1-3    |
| $\mathrm{d}\sigma \;/\; \mathrm{d}p_{\mathrm{T}}^{4\ell\mathrm{j}\mathrm{j}}$ | 11 - 76  | 5 - 27   | 1.7                                | 2-3     | 2-9    | 1-2        | 1-4        | 3 - 17   | 1 - 12 |

Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS



# H4ł systematics

| Observable                                                                                                    | Stat.    | Syst.    | Dominant systematic components [%] |         |        |            |            |          |        |
|---------------------------------------------------------------------------------------------------------------|----------|----------|------------------------------------|---------|--------|------------|------------|----------|--------|
|                                                                                                               | unc. [%] | unc. [%] | Lumi.                              | $e/\mu$ | Jets   | Other Bkg. | $ZZ^*$ Th. | Sig. Th. | Comp.  |
| $\sigma_{ m comb}$                                                                                            | 9        | 3        | 1.7                                | 2       | < 0.5  | < 0.5      | 1.0        | 1.5      | < 0.5  |
| $\sigma_{4\mu}$                                                                                               | 15       | 4        | 1.7                                | 3       | < 0.5  | < 0.5      | 1.5        | 1.0      | < 0.5  |
| $\sigma_{4\mathrm{e}}$                                                                                        | 26       | 8        | 1.7                                | 7       | < 0.5  | < 0.5      | 1.5        | 1.5      | < 0.5  |
| $\sigma_{2\mu2\mathrm{e}}$                                                                                    | 20       | 7        | 1.7                                | 5       | < 0.5  | < 0.5      | 2          | 1.5      | < 0.5  |
| $\sigma_{2\mathrm{e}2\mu}$                                                                                    | 15       | 3        | 1.7                                | 2       | < 0.5  | < 0.5      | 1          | 1.5      | < 0.5  |
| $\mathrm{d}^2\sigma \; / \; \mathrm{d}m_{12} \; \mathrm{d}m_{34}$                                             | 16 - 65  | 3–11     | 1.7                                | 2-3     | < 1    | 1 - 2      | 1-9        | 1-3      | 1 - 2  |
| $\mathrm{d}^2\sigma \ / \ \mathrm{d}p_{\mathrm{T}}^{4\ell} \ \mathrm{d} y_{4\ell} $                           | 23 - 63  | 2 - 13   | 1.7                                | 1 - 3   | 1 - 2  | < 1        | 1 - 6      | 1 - 5    | 1 - 2  |
| ${ m d}^2\sigma$ / ${ m d}p_{ m T}^{4\ell}$ ${ m d}N_{ m jets}$                                               | 23 - 93  | 4 - 193  | 1.7                                | 2 - 14  | 2 - 25 | 1 - 3      | 1 - 7      | 1 - 12   | 1 - 92 |
| $\mathrm{d}^2\sigma$ / $\mathrm{d}p_{\mathrm{T}}^{4\ell\mathrm{j}}$ $\mathrm{d}m_{4\ell\mathrm{j}}$           | 15 - 41  | 4 - 12   | 1.7                                | 1 - 3   | 2-8    | < 0.5      | 1 - 5      | 2-9      | < 1    |
| $\mathrm{d}^2\sigma$ / $\mathrm{d}p_{\mathrm{T}}^{4\ell}$ $\mathrm{d}p_{\mathrm{T}}^{4\ell\mathrm{j}}$        | 15 - 53  | 3-10     | 1.7                                | 1 - 3   | 2-8    | < 1        | 1 - 2      | 2-6      | 1 - 2  |
| ${ m d}^2\sigma$ / ${ m d}p_{ m T}^{4\ell}$ ${ m d}p_{ m T}^{ m lead.~jet}$                                   | 15 - 84  | 3 - 21   | 1.7                                | 1-3     | 2 - 18 | 1 - 10     | 1-3        | 2-9      | 1 - 3  |
| $\mathrm{d}^2\sigma \;/\; \mathrm{d}p_{\mathrm{T}}^{\mathrm{lead.~jet}} \;\mathrm{d} y^{\mathrm{lead.~jet}} $ | 15 - 38  | 3-11     | 1.7                                | 1-3     | 2-9    | < 0.5      | 1 - 2      | 1 - 4    | 1 - 2  |
| ${\rm d}^2\sigma\;/\;{\rm d}p_{\rm T}^{\rm lead.~jet}\;{\rm d}p_{\rm T}^{\rm sublead.~jet}$                   | 15 - 63  | 5 - 22   | 1.7                                | 1–3     | 4 - 15 | < 0.5      | 1 - 4      | 3-11     | 1 - 7  |

Higgs differential XS and mass measurement in ATLAS





Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS

# H4<sup>l</sup> inclusive fiducial and total cross-sections



# All H4<sup>2</sup> Pseudo-Observables results

ε<sub>L</sub>



Antoine Laudrain (JGU-Mainz)

| _ |                                                                                            |                                |                   |                      |                   |
|---|--------------------------------------------------------------------------------------------|--------------------------------|-------------------|----------------------|-------------------|
| - | -                                                                                          | Interpretation                 | Parar             | meter best-fit value | 95% confidence in |
|   |                                                                                            | EFT incrimed $OP = 0.49$ of    |                   | = 0.03               | [-0.25, 0.17]     |
| / | $E\Gamma$ $\Gamma$ $\Gamma$ $\Gamma$ $\Gamma$ $\Gamma$ $\Gamma$ $\Gamma$ $\Gamma$ $\Gamma$ |                                | $\kappa_{ZZ}$     | = 0.93               | [0.51, 1.16]      |
| - | -                                                                                          | - Flowour non universal vector |                   | = -0.005             | [-0.097, 0.082]   |
|   |                                                                                            | $\epsilon_{Z\mu}$              | = 0.054           | [-0.131, 0.11]       |                   |
|   | Flavour non universal axial vector                                                         | $\epsilon_{Ze}$                | = -0.022          | [-0.056, 0.012]      |                   |
|   |                                                                                            |                                | $\epsilon_{Z\mu}$ | = 0.008              | [-0.016, 0.03]    |
| - |                                                                                            |                                |                   |                      |                   |







# Hγγ differential cross-sections and interpretations



# Hyy phase space definition: fiducial

| Objects  | Fiducial definition                                |
|----------|----------------------------------------------------|
| Photons  | $ \eta  < 2.37$ (excluding 1.37 <                  |
| Jets     | anti- $k_t, R = 0.4, p_T > 30$ (                   |
| Diphoton | $N_{\gamma} \ge 2,  105  GeV < m_{\gamma\gamma} <$ |

Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS

 $\begin{array}{l} < |\eta| < 1.52), \quad \sum p_{\rm T}^{i}/p_{\rm T}^{\gamma} < 0.05 \\ {\rm GeV}, \quad |y| < 4.4 \\ < 160 \, GeV, \quad p_{\rm T}^{\gamma_1}/m_{\gamma\gamma} > 0.35, \quad p_{\rm T}^{\gamma_2}/m_{\gamma\gamma} > 0.25 \end{array}$ 



# Hyy inclusive fiducial XS systematics ranking

| Source                                 | Un |
|----------------------------------------|----|
| Statistics                             |    |
| Signal extraction syst.                |    |
| Photon energy scale & resolution       |    |
| Background modelling (spurious signal) |    |
| Correction factor                      |    |
| Pile-up modelling                      |    |
| Photon identification efficiency       |    |
| Photon isolation efficiency            |    |
| Trigger efficiency                     |    |
| Theoretical modelling                  |    |
| Photon energy scale & resolution       |    |
| Luminosity                             |    |
| Total                                  |    |
|                                        |    |



Higgs differential XS and mass measurement in ATLAS



# Bin-correlations in Hyy differential XS

|                                           |             |     |      | ŀ     |       | → ĵ   | γγ,   | ۱.    | <u>s</u> =                       | = 1;  | 3 T   | ēν         | ', '       | 139        | 9 fb       | ) <sup>-1</sup> |         |              |                  | <b>A</b> 7 | TLA  | 45     | Ρ           | reli   | mir          | nar       | у        |                   |             |                            |                 |        |        |  | 100 |                     |
|-------------------------------------------|-------------|-----|------|-------|-------|-------|-------|-------|----------------------------------|-------|-------|------------|------------|------------|------------|-----------------|---------|--------------|------------------|------------|------|--------|-------------|--------|--------------|-----------|----------|-------------------|-------------|----------------------------|-----------------|--------|--------|--|-----|---------------------|
| i1                                        | 120-350     | 2   | 0    | 1     | 0     | 2     | 2     | 1     | 3                                | 4     | 9     | 12         | 18         | 24         | 28         | 24              | 23      | 16           | 1                | 9          | 24   | 33     | 9           | 41     | 23           | 26        | 9        | 9                 | 27          | 0                          | 0               | 0      | 100    |  | 100 |                     |
| $p_{\tau}$                                | 75-120      | 0   | 1    | 2     | 1     | 3     | 2     | 2     | 6                                | 10    | 21    | 29         | 24         | 14         | 10         | 3               | 4       | 2 I          | 0                | 23         | 29   | 25     | 24 24       | 29     | 9 I          | 25        | 12       | 14                | 23          | 0                          | 0               | 100    | 0      |  |     |                     |
|                                           | 55-75       | 0   | 2    | 1     | 3     | 5     | 4     | 5     | 11                               | 20    | 25    | 16         | 10         | 4          | 2          | 0               | 0       | 0            | 0                | 32         | 26   | 15     | 28          | 13     | 6 I          | 17        | 12       | 14                | 17 <b> </b> | 0                          | 100             | 0      | 0      |  | 00  | %                   |
|                                           | 30-55       | 3   | 6    | 9     | 11    | 12    | 16    | 18    | 25                               | 28    | 19    | 6          | 4          | _1         | _ 1_       | 0               | 0       | 0            | _0_              | 73         | 25   | 8      | 26          | 7      | <u>4</u>     | 13        | 13       | 12                | 13          | 100                        | 0               | 0      | 0      |  | 90  |                     |
|                                           | π/2-π       | 0   | 4    | 3     | 3     | 5     | 6     | 6     | 8                                | 12    | 12    | 10         | 9          | 7          | 7          | 5               | 3       | 3            | 0                | 0          | 48   | 34     | 37          | 42     | 20           | 0         | 0        | 0                 | 100         | 13                         | 17              | 23     | 27     |  |     | D                   |
| A 4                                       | 0-(π/2)     | 1   | 0    | 1     | 2     | 2     | 1     | 1     | 4                                | 7     | 9     | 11         | 15         | 9          | 10         | 6               | 7       | 5            | 0                | 0          | 34   | 21     | 38          | 16     | 8            | 0         | 0        | 100               | 0           | 12                         | 14              | 14     | 9      |  | ~ ~ | ati                 |
| $\Delta \phi_{_{\rm ii}}$                 | (-π/2)-0    | 2   | 2    | 1     | 1     | 0     | 1     | 1     | 4                                | 5     | 10    | 12         | 11         | 9          | 12         | 8               | 8       | 6            | 1                | 0          | 34   | 20     | 38          | 14     | 10           | 0         | 100      | 0                 | 0           | 13                         | 12              | 12     | 9      |  | 80  | <del></del> <u></u> |
| ) [[                                      | (-π)-(-π/2) | 2   | 1    | 1     | 4     | _6    | _ 5_  | 5     | 9                                |       | _14_  | 11         | 9          | _7         | _ 5 _      | 5               | 4       | _4           | 0_               | 0          | 49   | 36     | 39          | 42     | 20           | 100       | 0        | 0                 | 0           | 13                         | 17              | 25     | 26     |  |     | Ĵ                   |
| <i>m</i>                                  | 500-1500    | 2   | 0    | 0     | 0     | 3     | 0     | 2     | 3                                | 5     | 7     | 7          | 7          | 5          | 6          | 6               | 7       | <sub>6</sub> | 0                | 0          | 20   | 25     | 0           | 0      | 100          | 20        | 10       | 8                 | 20          | 4                          | 6               | 9      | 23     |  |     | 8                   |
|                                           | 170-500     | 0   | 2    | 2     | 3     | 3     | 4     | 4     | 7                                | 10    | 14    | 13         | 13         | 13         | 11         | 9               | 6       | 7            | 1                | 0          | 45   | 43     | 0           | 100    | 0            | 42        | 14       | 16                | 42          | 7                          | 13              | 29     | 41     |  | 70  |                     |
| [GeV]                                     | 0-170       | 3   | 3    | 3     | 4     | _6    | _ 7_  | 6     | 10                               | _14   | _16_  | 15         | 14         | _9         | 9_         | 5               | 5       | <u>3</u>     | L <sup>1</sup> _ | 0          | 68   | 31     | 100         | 0      | 0            | 39        | 38       | 38                | 37          | 26                         | 28              | 24     | 9      |  |     | C<br>C              |
|                                           | ≥ 3         | 0   | 2    | 1     | 1     | 4     | 3     | 3     | 6                                | 10    | 12    | 14         | 13         | 11         | 11         | 10              | 9       | <sup>7</sup> | 0                | 0          | 0    | 100    | 31          | 43     | 25           | 36        | 20       | 21                | 34          | 8                          | 15              | 25     | 33     |  |     | Sti                 |
| ٨/                                        | = 2         | 3   | 3    | 4     | 5     | 6     | 7     | 7     | 11                               | 16    | 19    | 17         | 16         | 12         | 11         | 7               | 6       | 5            | 0                | 0          | 100  | 0      | 68          | 45     | 20           | 49        | 34       | 34                | 48          | 25                         | 26              | 29     | 24     |  | 60  | Itis                |
| / <b>v</b> jets                           | = 1         | 2   | 4    | 7     | 9     | 11    | 13    | 15    | 24                               | 30    | 29    | 18         | 13         | 8          | 7          | 2               | 2       | 1            | 0                | 100        | 0    | 0      | 0           | 0      | 0            | 0         | 0        | 0                 | 0           | 73                         | 32              | 23     | 9      |  | ••• | Ita                 |
| -                                         | = 0         | 29  | 40   | 36    | 34    | 30    | 24    | 19    | 20                               | 13    | _ 5_  | 1          | 0          | _2         | 00         | 1               | 0       | 0            | 100              | 0          | 0    | _0     | <u>1</u>    | _ 1_   | <u>0</u>     | 0         | _1       | 0                 | 0           | 0                          | 0               | 0      | 1      |  |     | S                   |
|                                           | 250-350     | 0   | 0    | 0     | 0     | 0     | 0     | 0     | 0                                | 0     | 0     | 0          | 0          | 0          | 0          | 0               | 0       | 100          | 0                | 1          | 5    | 7      | 3           | 7      | 6 I          | 4         | 6        | 5                 | з I         | 0                          | 0               | 2      | 16     |  | 50  |                     |
|                                           | 200-250     | 0   | 0    | 0     | 0     | 0     | 0     | 0     | 0                                | 0     | 0     | 0          | 0          | 0          | 0          | 0               | 100     | 0            | 0                | 2          | 6    | 9      | 5           | 6      | 7            | 4         | 8        | 7                 | 3           | 0                          | 0               | 4      | 23     |  | 50  |                     |
|                                           | 170-200     | 0   | 0    | 0     | 0     | 0     | 0     | 0     | 0                                | 0     | 0     | 0          | 0          | 0          | 0          | 100             | 0       | 0            | 1                | 2          | 7    | 10     | 5           | 9      | 6            | 5         | 8        | 6                 | 5           | 0                          | 0               | 3      | 24     |  |     |                     |
|                                           | 140-170     | 0   | 0    | 0     | 0     | 0     | 0     | 0     | 0                                | 0     | 0     | 0          | 0          | 0          | 100        | 0               | 0       | 0            | 0                | 7          | 11   | 11     | 9           | 11     | <sup>6</sup> | 5         | 12       | 10                | 7           | 1                          | 2               | 10     | 28     |  | 10  |                     |
|                                           | 120-140     | 0   | 0    | 0     | 0     | 0     | 0     | 0     | 0                                | 0     | 0     | 0          | 0          | 100        | 0          | 0               | 0       | 0            | 2                | 8          | 12   | 11     | 9           | 13     | 5            | 7         | 9        | 9                 | 7           | 1                          | 4               | 14     | 24     |  | 40  |                     |
|                                           | 100-120     | 0   | 0    | 0     | 0     | 0     | 0     | 0     | 0                                | 0     | 0     | 0          | 100        | 0          | 0          | 0               | 0       | 0            | 0                | 13         | 16   | 13     | 14          | 13     | 7            | 9         | 11       | 15                | 9           | 4                          | 10              | 24     | 18     |  |     |                     |
|                                           | 80-100      | 0   | 0    | 0     | 0     | 0     | 0     | 0     | 0                                | 0     | 0     | 100        | 0          | 0          | 0          | 0               | 0       | 0            | 1                | 18         | 17   | 14     | 15          | 13     | 7            | 11        | 12       | 11                | 10          | 6                          | 16              | 29     | 12     |  | ~~  |                     |
| $\boldsymbol{\mathcal{D}}^{\gamma\gamma}$ | 60-80       | 0   | 0    | 0     | 0     | 0     | 0     | 0     | 0                                | 0     | 100   | 0          | 0          | 0          | 0          | 0               | 0       | 0            | 5                | 29         | 19   | 12     | 16          | 14     | 7 I          | 14        | 10       | 9                 | 12          | 19                         | 25              | 21     | 9      |  | 30  |                     |
|                                           | 45-60       | 0   | 0    | 0     | 0     | 0     | 0     | 0     | 0                                | 100   | 0     | 0          | 0          | 0          | 0          | 0               | 0       | 0            | 13               | 30         | 16   | 10     | 14          | 10     | 5 <b> </b>   | 11        | 5        | 7                 | 12          | 28                         | 20              | 10     | 4      |  |     |                     |
| [Gev]                                     | 35-45       | 0   | 0    | 0     | 0     | 0     | 0     | 0     | 100                              | 0     | 0     | 0          | 0          | 0          | 0          | 0               | 0       | 0            | 20               | 24         | 11   | 6      | 10          | 7      | 3            | 9         | 4        | 4                 | 8           | 25                         | 11              | 6      | 3      |  |     |                     |
|                                           | 30-35       | 0   | 0    | 0     | 0     | 0     | 0     | 100   | 0                                | 0     | 0     | 0          | 0          | 0          | 0          | 0               | 0       | 0            | 19               | 15         | 7    | 3      | 6           | 4      | 2            | 5         | 1        | 1                 | 6           | 18                         | 5               | 2      | 1      |  | 20  |                     |
|                                           | 25-30       | 0   | 0    | 0     | 0     | 0     | 100   | 0     | 0                                | 0     | 0     | 0          | 0          | 0          | 0          | 0               | 0       | 0            | 24               | 13         | 7    | 3      | 7           | 4      | 0            | 5         | 1        | 1                 | 6           | 16                         | 4               | 2      | 2      |  |     |                     |
|                                           | 20-25       | 0   | 0    | 0     | 0     | 100   | 0     | 0     | 0                                | 0     | 0     | 0          | 0          | 0          | 0          | 0               | 0       | 0            | 30               | 11         | 6    | 4      | 6           | 3      | 3            | 6         | 0        | 2                 | 5           | 12                         | 5               | 3      | 2      |  |     |                     |
|                                           | 15-20       | 0   | 0    | 0     | 100   | 0     | 0     | 0     | 0                                | 0     | 0     | 0          | 0          | 0          | 0          | 0               | 0       | 0            | 34               | 9          | 5    | 1      | <b>4</b>    | 3      | 0            | 4         | 1        | 2                 | 3           | 11                         | 3               | 1      | 0      |  | 10  |                     |
|                                           | 10-15       | 0   | 0    | 100   | 0     | 0     | 0     | 0     | 0                                | 0     | 0     | 0          | 0          | 0          | 0          | 0               | 0       | 0            | 36               | 7          | 4    | 1      | <b>I</b> 3  | 2      | <sub>0</sub> | 1         | 1        | 1                 | з I         | 9                          | 1               | 2      | 1      |  | 10  |                     |
|                                           | 5-10        | 0   | 100  | 0     | 0     | 0     | 0     | 0     | 0                                | 0     | 0     | 0          | 0          | 0          | 0          | 0               | 0       | 0            | 40               | 4          | 3    | 2      | <b>3</b>    | 2      | 0            | 1         | 2        | 0                 | 4           | 6                          | 2               | 1      | 0      |  |     |                     |
|                                           | 0-5         | 100 | 0    | 0     | 0     | 0     | 0     | 0     | 0                                | 0     | 0     | 0          | 0          | 0          | 0          | 0               | 0       | 0            | 29               | 2          | 3    | 0      | 3           | 0      | 2            | 2         | 2        | 1                 | 0           | 3                          | 0               | 0      | 2      |  | Δ   |                     |
|                                           |             | 0-5 | 5-10 | 10-15 | 15-20 | 20-25 | 25-30 | 30-35 | 35-45                            | 45-60 | 60-80 | 80-100     | 00-120     | 20-140     | 40-170     | 70-200          | 200-250 | 250-350      | 0 =              |            | = 2  | ເ<br>∾ | 0-170       | 70-500 | 0-1500       | τ)-(-π/2) | (-π/2)-0 | 0-(π/2)           | π/2-π       | 30-55                      | 55-75           | 75-120 | 20-350 |  | 0   |                     |
|                                           |             |     |      |       |       |       |       |       | $\mathcal{O}_{T}^{\gamma\gamma}$ | [G    | ìe∨   | <b>'</b> ] | <b>,</b> – | <b>,</b> - | <b>,</b> - | •               |         |              |                  | N          | jets | I      | $m_{_{jj}}$ | [Ge    | ਮੱ<br>eV]    | (-2       | Δ        | $\phi_{_{ m jj}}$ |             | $p_{_{T}}^{^{j^{\prime}}}$ | <sup>1</sup> [( | Ge\    | /]     |  |     |                     |

Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS





Antoine Laudrain (JGU-Mainz)

# EFT limits in Hyy

### SILH

### right: CP-even left: CP-odd

SMEFT

**Higgs differential XS and mass measurement in ATLAS** 

![](_page_50_Picture_9.jpeg)

# EFT limits in $H\gamma\gamma$

| Coefficient              | Observed $95\%$ CL limit       | Expected $95\%$ CL limit                         |
|--------------------------|--------------------------------|--------------------------------------------------|
| $\overline{c}_g$         | $[-0.26, 0.26] \times 10^{-4}$ | $[-0.25, 0.25] \cup [-4.7, -4.3] \times 10^{-4}$ |
| ${\widetilde c}_g$       | $[-1.3, 1.1] \times 10^{-4}$   | $[-1.1, 1.1] \times 10^{-4}$                     |
| $\overline{c}_{HW}$      | $[-2.5, 2.2] \times 10^{-2}$   | $[-3.0, 3.0] \times 10^{-2}$                     |
| $	ilde{c}_{HW}$          | $[-6.5, 6.3] \times 10^{-2}$   | $[-7.0, 7.0] \times 10^{-2}$                     |
| $\overline{c}_\gamma$    | $[-1.1, 1.1] \times 10^{-4}$   | $[-1.0, 1.2] \times 10^{-4}$                     |
| $\widetilde{c}_{\gamma}$ | $[-2.8, 4.3] \times 10^{-4}$   | $[-2.9, 3.8] \times 10^{-4}$                     |

### SILH

|       | Coefficient           | 95% CL, interference-only terms | 95% CL, interference and quadratic terms |
|-------|-----------------------|---------------------------------|------------------------------------------|
|       | $\overline{C}_{HG}$   | $[-4.2, 4.8] \times 10^{-4}$    | $[-6.1, 4.7] \times 10^{-4}$             |
|       | $\widetilde{C}_{HG}$  | $[-2.1, 1.6] \times 10^{-2}$    | $[-1.5, 1.4] \times 10^{-3}$             |
|       | $\overline{C}_{HW}$   | $[-8, 2, 7.4] \times 10^{-4}$   | $[-8.3, 8.3] \times 10^{-4}$             |
| SMEFT | $\widetilde{C}_{HW}$  | [-0.26, 0.33]                   | $[-3.7, 3.7] \times 10^{-3}$             |
|       | $\overline{C}_{HB}$   | $[-2.4, 2.3] \times 10^{-4}$    | $[-2.4, 2.4] \times 10^{-4}$             |
|       | $\widetilde{C}_{HB}$  | [-13.0, 14.0]                   | $[-1.2, 1.1] \times 10^{-3}$             |
|       | $\overline{C}_{HWB}$  | $[-4.0, 4.4] \times 10^{-4}$    | $[-4.2, 4.2] \times 10^{-4}$             |
|       | $\widetilde{C}_{HWB}$ | [-11.1, 6.5]                    | $[-2.0, 2.0] \times 10^{-3}$             |

Antoine Laudrain (JGU-Mainz)

Higgs differential XS and mass measurement in ATLAS

![](_page_51_Picture_7.jpeg)

![](_page_51_Picture_8.jpeg)

# Mass measurement

![](_page_52_Picture_1.jpeg)

# Resolution on mH with or without Per-Event Resolution

![](_page_53_Figure_1.jpeg)

Antoine Laudrain (JGU-Mainz)

![](_page_53_Picture_6.jpeg)

# Latest CMS Higgs mass result Phys. Lett. B 805 (2020) 135425

### CMS

![](_page_54_Figure_3.jpeg)

Antoine Laudrain (JGU-Mainz)

**Higgs differential XS and mass measurement in ATLAS** 

![](_page_54_Picture_9.jpeg)

# Previous ATLAS Higgs mass result

### <u>Phys. Lett. B 784 (2018) 345</u>

![](_page_55_Figure_2.jpeg)

Antoine Laudrain (JGU-Mainz)

ATLAS record

Higgs differential XS and mass measurement in ATLAS

![](_page_55_Picture_8.jpeg)

![](_page_55_Picture_9.jpeg)