Search for rare and lepton-flavour-violating decays of the Higgs boson with the ATLAS detector

Hanna Borecka-Bielska on behalf of the ATLAS Collaboration

40th International Conference on High Energy Physics 29th July 2020

Introduction

Motivation

- Test of the yet unobserved Higgs boson couplings to 1st and 2nd generation fermions
- Probe of Yukawa interactions in SM
- Test of BSM models by searching for lepton-flavour-violating (LFV) Higgs boson decays

Searches covered here

- $H \to \mu\mu$, 139 fb⁻¹ <u>arXiv:2007.07830</u> NEW!
- ► $H \to ee \& H \to e\mu$, **139** fb⁻¹ Phys. Lett. B 801 (2020) 135148
- ► $H \to e\tau \& H \to \mu\tau$, **36** fb⁻¹ Phys. Lett. B 800 (2020) 135069

$H \rightarrow \mu \mu$ analysis overview

Introduction

- Very small branching ratio of 2.2 · 10⁻⁴
- Large irreducible background dominated by Drell-Yan (DY)
 - ▷ S/B = 0.2% for $m_{\mu\mu} \in (120, 130)$ GeV

Analysis strategy

- Loose selection to maximise signal acceptance
- Adding up to one final-state-radiation photon to improve dimuon mass resolution (only in ggF and VBF categories)
- Production-driven categorisation using BDTs
 - ▷ targeting production channels in the following order: tīH, VH, VBF and ggF
- ► Signal extraction from an *S*+*B* fit to dimuon mass distribution in mass range 110–160 GeV

$H \rightarrow \mu \mu \ t \bar{t} H$ and V H categories

tīΗ

- Targeting dileptonic or semileptonic decays of tt
 - requiring at least one additional lepton (µ or e) and at least one b-jet
- BDT discriminant used to further reduce background
- Background dominated by ttZ
- Expected signal yield: 1.2 events
- Expected S/B = 8%

VH

- Targeting leptonic decays of vector boson, either W → ℓv (VH3L) or Z → ℓℓ (VH4L), ℓ = µ, e
 - requiring at least one additional lepton, no b-jets
- Separate training of BDTs in VH3L and VH4L
- Two categories defined in VH3L, single category in VH4L
- Background dominated by diboson
- Expected signal yields (S/B): 1.4 (3.7%) in VH3LH, 2.8 (0.8%) in VH3LM, 0.5 (2.6%) in VH4L

$H \rightarrow \mu \mu \ VBF$ and ggF categories

- Requiring events with exactly two opposite-sign muons, no b-jets
- ► Events divided into N-jet channels: 0-, 1- and 2-jet (including ≥ 2 jets)
- Separate training of classifiers in different channels to fully exploit differences between S and B
- Events categorised based on dedicated BDT output in each N-jet channel
 - 4 categories in 2-jet channel with the highest priority targeting VBF production mode based on BDT output O_{VBF}
 - ▷ 4 categories in each *N*-jet channel targeting *ggF* production process based on BDT output *O*^(N)_{*qgF*}
 - ▷ in the order of decreasing purity categories are: Very High, High, Medium and Low

$H \rightarrow \mu\mu$ signal and background composition

$H \rightarrow \mu \mu$ signal and background modelling

- Signal modelled with a double-sided Crystal Ball function
- Background model tested on high-statistics fast DY MC simulation and created from two components:

 $PDF_{bkg}(m_{\mu\mu}) = (Core function) \times (Empirical function)$

- Core function is a LO DY line-shape convolved with a Gaussian to account for resolution effects
 - ▷ no free parameters, same in all categories
- Empirical function corrects for distortions of the mass shape induced by the selection of each category
 - selected based on a few criteria from two families of functions
 - number of free parameters depending on category

Function	Expression
PowerN EpolyN	$m_{\mu\mu}^{(a_0+a_1m_{\mu\mu}+a_2m_{\mu\mu}^2+\cdots+a_Nm_{\mu\mu}^N)} \exp(a_0+a_1m_{\mu\mu}+a_2m_{\mu\mu}^2+\cdots+a_Nm_{\mu\mu}^N)$

Observed signal strength:

 1.2 ± 0.6

Major uncertainties:

- data statistics: ±0.58
- signal theory systematic: +0.13 -0.08
- signal experimental systematic: +0.07 -0.03
- background modelling: ±0.10

Observed (expected) significance:

2.0σ (1.7σ)

Observed (expected) limit on signal strength at 95% CL:

2.2 (1.1 for the case of no $H \rightarrow \mu\mu$ signal)

Observed limit on branching fraction at 95% CL: $\mathcal{B}(H \rightarrow \mu\mu) < 4.7 \cdot 10^{-4}$

$H \rightarrow ee$ and $H \rightarrow e\mu$ searches overview

Introduction

- ► $H \rightarrow ee$ branching ratio ~ $5 \cdot 10^{-9}$ far below sensitivity of any experiment
- Large irreducible backgrounds
- Test of BSM models

Analysis strategy

- ► Similar strategy to the $H \rightarrow \mu\mu$ 36 fb⁻¹ search (Phys. Rev. Lett. 119 (2017) 051802)
- Selection based on:
 - ▷ exactly two opposite-sign leptons with $p_{\top}^{\ell 1}(p_{\top}^{\ell 2}) > 27(15)$ GeV
 - vetoing events with b-jets or high E^{miss} significance
- ► Categorisation targeting ggF and VBF production modes
 - ▷ cut-based VBF category requiring 2 forward jets with large rapidity gap between them
 - \triangleright remaining events divided into six ggF categories split by $p_{T}^{\ell\ell}$ and $|\eta_{\ell 1, \ell 2}|$
 - ▷ additional low- p_{T} category in $e\mu$ with either lepton p_{T} below 27 GeV (larger fake contrib.)
- \triangleright S+B fit to dilepton mass distribution to extract signal from a falling background

$H \rightarrow ee$ and $H \rightarrow e\mu$ fits and results

- ▶ Signal in both channels modelled with a sum of Crystal Ball and Gaussian functions
- ► Background model in $H \rightarrow ee$ the same as the one used in the $H \rightarrow \mu\mu$ 36 fb⁻¹ analysis (the same dominating background DY)
- ► $H \rightarrow e\mu$ background composition more complex $(Z/\gamma^* \rightarrow \tau\tau, \text{ top, diboson, } W+\text{jets,} misidentified jets}) \rightarrow \text{background modelled with Bernstein polynomial of degree two}$

$H \rightarrow e \tau$ and $H \rightarrow \mu \tau$ searches overview

Introduction

- Test of BSM models
- ► Many methods reused from $H \rightarrow \tau \tau$ analysis (Phys. Rev. D 99 (2019) 072001)

Analysis strategy

- Considering: $e \tau_{\mu}$, $e \tau_{had}$, $\mu \tau_e$ and $\mu \tau_{had}$ channels
- Each channel divided into VBF and non-VBF SRs
- Additional top and $Z \rightarrow \tau \tau$ CRs in $\ell \tau_{\ell'}$ channel
- Using BDTs to enhance separation between S and B in SRs
- Combined binned likelihood fit to all BDT bins in SRs and CR yields independently in $e\tau$ and $\mu\tau$
 - ▷ constrain background and extract $\mathcal{B}(H \rightarrow \ell \tau)$

$H \rightarrow e \tau$ and $H \rightarrow \mu \tau$ modelling and results

Main backgrounds

- Events with misidentified objects estimated using data-driven techniques
- $Z \rightarrow \tau \tau$ and top shape from MC, normalisation from fit
- Other $(Z \to \mu\mu$, diboson, $H \to \tau\tau$, $H \to WW$) constrained to SM prediction

Main sources of systematic uncertainties

- Estimation of backgrounds from misidentified objects
- Jet energy scale

	$H \rightarrow e \tau$	$H ightarrow \mu \tau$
$\mathcal{B}(H \to \ell \tau)$	$(0.15^{+0.18}_{-0.17})\%$	$(-0.22 \pm 0.19)\%$
Observed limit at 95% CL	0.47%	0.28%
Expected limit at 95% CL	$(0.34^{+0.13}_{-0.10})\%$	$(0.37^{+0.14}_{-0.10})\%$

Conclusions

Presented new $H \rightarrow \mu\mu$ result using full Run-2 data (139 fb⁻¹)

- Signal strength: 1.2 ± 0.6 , significance: 2.0σ
- ► Factor 2.5 improvement in expected sensitivity w.r.t. the previous published result (36 fb⁻¹)
- Larger dataset and improvements in the analysis including:
 - more categories defined only based on BDT classifiers
 - ▷ additional categories targeting VH and ttH production
 - improved background modelling
 - FSR recovery

Presented also searches for $H \rightarrow ee$ and LFV decays

• No evidence \rightarrow limits set on the branching ratios

Additional material

	Selection
Common preselection	Primary vertex Two opposite-charge muons Muons: $ \eta < 2.7$, $p_T^{lead} > 27$ GeV, $p_T^{sublead} > 15$ GeV (except VH 3-lepton)
Fit Region	$110 < m_{\mu\mu} < 160 \text{GeV}$
Jets	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.4 or with $p_{\rm T}$ > 30 GeV and 2.4 < $ \eta $ < 4.5
$t\bar{t}H$ Category VH 3-lepton Categories VH 4-lepton Category ggF +VBF Categories	at least one additional e or μ with $p_T > 15$ GeV, at least one b -jet (85% WP) $p_T^{sublead} > 10$ GeV, one additional e (μ) with $p_T > 15(10)$ GeV, no b -jets (85% WP) at least two additional e or μ with $p_T > 8, 6$ GeV, no b -jets (85% WP) no additional μ , no b -jets (60% WP)

$H \rightarrow \mu \mu$ FSR recovery

- Selecting photons only with $\Delta R(\mu, \gamma) < 0.2$
- Variable p_{T} threshold for the photon to reduce pile-up induced background:

 $p_{\top}^{\gamma} [\text{GeV}] \geq 3 + 25 \cdot \Delta R(\mu, \gamma)$

- If more than one photon passes the selection the one with highest p_{T} is chosen
- ▶ Width of the signal mass peak reduced by 3% after FSR recovery
- ▶ Negligible contribution from loop-induced $H \rightarrow Z\gamma$, $Z \rightarrow \mu\mu$ process

$H \rightarrow \mu \mu \ t \bar{t} H$ training variables

$H \rightarrow \mu \mu VH$ 3-lepton training variables

$H \rightarrow \mu \mu VH$ 4-lepton training variables

$H \rightarrow \mu \mu$ 2-jet channel training variables

Hanna Borecka-Bielska | University of Liverpool

$H \rightarrow \mu \mu$ 2-jet channel training variables

$H \rightarrow \mu \mu$ 1-jet channel training variables

$H \rightarrow \mu \mu$ 0-jet channel training variables

$H \rightarrow \mu\mu$ signal model

$H \rightarrow \mu\mu$ mass distributions in fast simulation

$H \rightarrow \mu\mu$ mass distributions in fast simulation

$H \rightarrow \mu\mu$ selection criteria for empirical function

- 1. Tested background model must fit with the χ^2 probability above 1% the dimuon mass distribution in:
 - ▶ data sidebands ($m_{\mu\mu} \in (110, 120) \cup (130, 160)$)
 - ► full MC simulation
 - ► fast simulation of the DY background (only in ggF and VBF categories)
- 2. The associated spurious signal uncertainty must be lower than 20% of the statistical uncertainty
- 3. If more than one function passes criteria 1. and 2. the one with lowest number of degrees of freedom and then lowest spurious signal is selected

$H \rightarrow \mu\mu S + B$ fits in major groups of categories

$H \rightarrow \mu \mu S + B$ fits in categories

$H \rightarrow \mu \mu S + B$ fits in categories

 $H \rightarrow \mu\mu$ signal and background yields

Category	Data	$S_{\rm SM}$	S	В	S/\sqrt{B}	S/B~[%]
VBF Very High	15	2.81 ± 0.27	3.3 ± 1.7	14.5 ± 2.1	0.86	22.6
VBF High	39	3.46 ± 0.36	4.0 ± 2.1	32.5 ± 2.9	0.71	12.4
VBF Medium	112	4.8 ± 0.5	5.6 ± 2.8	85 ± 4	0.61	6.6
VBF Low	284	7.5 ± 0.9	9 ± 4	273 ± 8	0.53	3.2
2-jet Very High	1030	17.6 ± 3.3	21 ± 10	1024 ± 22	0.63	2.0
2-jet High	5433	50 ± 8	58 ± 30	5440 ± 50	0.77	1.0
2-jet Medium	18311	79 ± 15	90 ± 50	18320 ± 90	0.66	0.5
2-jet Low	36409	63 ± 17	70 ± 40	36340 ± 140	0.37	0.2
1-jet Very High	1097	16.5 ± 2.4	19 ± 10	1071 ± 22	0.59	1.8
1-jet High	6413	46 ± 7	54 ± 28	6320 ± 50	0.69	0.9
1-jet Medium	24576	90 ± 11	100 ± 50	24290 ± 100	0.67	0.4
1-jet Low	73459	125 ± 17	150 ± 70	73480 ± 190	0.53	0.2
0-jet Very High	15986	59 ± 11	70 ± 40	16090 ± 90	0.55	0.4
0-jet High	46523	99 ± 13	120 ± 60	46190 ± 150	0.54	0.3
0-jet Medium	91392	119 ± 14	140 ± 70	91310 ± 210	0.46	0.2
0-jet Low	121354	79 ± 10	90 ± 50	121310 ± 280	0.26	0.1
VH4L	34	0.53 ± 0.05	0.6 ± 0.3	24 ± 4	0.13	2.6
VH3LH	41	1.45 ± 0.14	1.7 ± 0.9	41 ± 5	0.27	4.2
VH3LM	358	2.76 ± 0.24	3.2 ± 1.6	347 ± 15	0.17	0.9
$t\bar{t}H$	17	1.19 ± 0.13	1.4 ± 0.7	15.1 ± 2.2	0.36	9.2

Comparison between new and preliminary $H \rightarrow \mu\mu$ result

- ► Checked the compatibility with preliminary $H \rightarrow \mu\mu$ result presented in <u>ATLAS-CONF-2019-028</u> using bootstrap technique
- ► The correlation between the two signal strength measurements is evaluated to be 75%

μ ATLAS-CONF-2019-028	μ this work	Compatibility
0.5 ± 0.7	1.2 ± 0.6	1.4σ

BDT inputs in $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ searches

$\ell \tau_{si}$			l T		
Variable	VBF	non-VBF	Variable	VBF	non-VBF
m _{MMC}	HR	HR	m _{coll}	HR	HR
$p_{\mathrm{T}}^{\ell_1}$	•	•	p_{T}^{ℓ}	•	HR
$p_{\mathrm{T}}^{\ell_2}$	HR	HR	$p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}}$	•	HR
$\Delta R(\ell_1, \ell_2)$	HR	•	$\Delta R(\ell, \tau_{\text{had-vis}})$	•	•
$m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss})$	•	HR	$m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$	HR	•
$m_{\rm T}(\ell_2, E_{\rm T}^{\rm miss})$	HR	•	$m_{\rm T}(\tau_{\rm had-vis}, E_{\rm T}^{\rm miss})$	HR	HR
$\Delta \phi(\ell_1, E_{\rm T}^{\rm miss})$	•	•	$\Delta \phi(\ell, E_{\rm T}^{\rm miss})$	HR	•
$\Delta \phi(\ell_2, E_{\rm T}^{\rm miss})$		HR	$\Delta \phi(\tau_{\rm had-vis}, E_{\rm T}^{\rm miss})$	•	
$m(j_1, j_2)$	•		$m(j_1, j_2)$	•	
$\Delta \eta(\mathbf{j}_1, \mathbf{j}_2)$	HR		$\Delta \eta(j_1, j_2)$	•	
$p_{\mathrm{T}}^{ au}/p_{\mathrm{T}}^{\ell_1}$		HR	$\sum \cos \Delta \phi(i, E_{\rm T}^{\rm miss})$	•	•
			$i = \ell, \tau_{had-vis}$ F^{miss}	ЦΡ	
			T	IIK	цр
			$m_{\rm vis}$		TIK .
			$\Delta \eta(t, \tau_{\text{had-vis}})$		•
			η^{z}		•
			$\eta'^{had-vis}$		•
			ϕ^{ℓ}		•
			$\phi^{ au_{ ext{had-vis}}}$		•
			$\phi(E_{\rm T}^{\rm miss})$		•

$H \rightarrow e \tau$ post-fit BDT score distributions in SRs

$H \rightarrow \mu \tau$ post-fit BDT score distributions in SRs

Upper limits on the absolute values of $Y_{\ell\tau}$ couplings

$$|Y_{\ell\tau}|^2 + |Y_{\tau\ell}|^2 = \frac{8\pi}{m_H} \frac{\mathcal{B}(H \to \ell\tau)}{1 - \mathcal{B}(H \to \ell\tau)} \Gamma_H$$

