ICHEP 2020 Poster Session [ATLAS-CONF-2020-007] Measurement of Higgs boson production at high momentum in the VH, $H \rightarrow bb$ channel with the ATLAS detector

Novel analysis using boosted Higgs boson reconstruction techniques **First direct measurement of VH production for p_T^V > 400 GeV**

Motivation

Many BSM models predict deviations ~ (energy scale)^{2} Relative contribution of $qq \rightarrow VH$ w.r.t. other production modes rises with p_T^{Higgs}

R=1.0, anti-k_t, trimmed

High p_T Higgs bosons

- → decay products geometrically close
- \rightarrow boosted reconstruction techniques

Analysis strategy

H→bb highest branching fraction of ~ 58%

Leptonic V (V = W, Z) decays allow for triggering and to suppress backgrounds

Sub-channels according to number of charged leptons (e or μ) 0-lepton: $Z \rightarrow vv$ 1-lepton: W→{v 2-lepton: Z→łł

Fit the large-R jet mass m₁ in 10 signal and 4 control regions

Results

one large-R calorimeter jet

H→bb in

b-tagging on track-jets with p_T-dependent radius

Differential cross-section in p_T^v

Boosted techniques open the door for high energies and set tight constraints on p_T-dependent effects

Brian Moser (Nikhef) for the ATLAS collaboration brian.moser@cern.ch

