Higgs boson measurements in the H->WW->lvlv decay channel

ICHEP, 30th July, 2020 Anamika Aggarwal, on behalf of HWW ATLAS analysis group

Why H→WW? https://doi.org/10.1016/j.physletb.2018.11.064

- Large Branching ratio
- Distinguishable signal in leptonic decay mode
- Highest sensitivity to total signal strength

- 36.1 fb-1 data is analysed.
- Results derived with simultaneous maximum likelihood fit.
- Observables used in the fit:
- for ggF m_T $\left(m_T = \sqrt{\left(E_T^{\ell\ell} + E_T^{\text{miss}}\right)^2 \left|\mathbf{p}_T^{\ell\ell} + \mathbf{E}_T^{\text{miss}}\right|^2}\right)$
- for VBF BDT with input variables m_{jj} , Δy_{jj} , $m_{\ell\ell}$, $\Delta \phi_{\ell\ell}$, m_T , $\sum_{\ell} C_{\ell}$, $\sum_{\ell,j} m_{\ell j}$, p_T^{tot}

(m_{ii}) {m_{ii}}: invariant mass of 2 leading leptons (2 leading jets) {lepton-jet pair}

Δy_{ii}: difference between the two jet rapidities

 $\Delta \varphi_{ii} {:}$ difference between the azimuthal angles of the two

 $C_l = |2\eta_l - \sum \eta_i|/\eta_{ii}),$ here η: pseudorapidity p_T^{tot}: total transverse

Signal Region	Event selection criteria to get signal dominated region
---------------	---

Category	$N_{\text{jet},(p_T>30 GeV)}=0 \text{ ggF}$	$N_{\rm jet,(p_T>30~GeV)}=1~{\rm ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} \ge 2 \text{ VBF}$
Preselection	Preselection Two isolated, different-flavour leptons $(\ell = e, \mu)$ with opposite charge $p_{\mathrm{T}}^{\mathrm{lead}} > 22 \; \mathrm{GeV}, p_{\mathrm{T}}^{\mathrm{sublead}} > 15 \; \mathrm{GeV}$ $m_{\ell\ell} > 10 \; \mathrm{GeV}$		
	$p_{\mathrm{T}}^{\mathrm{miss}} > 20 \; \mathrm{GeV}$		
Background rejection	$\begin{array}{c c} \Delta\phi\left(\ell\ell,E_{\mathrm{T}}^{\mathrm{miss}}\right) > \pi/2 & \max\left(m_{\mathrm{T}}^{\ell}\right) > 50 \; \mathrm{GeV} \\ p_{\mathrm{T}}^{\ell\ell} > 30 \; \mathrm{GeV} & m_{\mathrm{T}\mathrm{T}} < m_{\mathrm{T}} \end{array}$		o _{GeV)} = 0 2 - 25 GeV
$H \rightarrow WW^* \rightarrow ev\mu v$ topology	$m_{\ell\ell}$ < 55 GeV $\Delta\phi_{\ell\ell}$ < 1.8		central jet veto outside lepton veto
Discriminant variable BDT input variables	m_{T}		BDT $m_{jj}, \Delta y_{jj}, m_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{T}, \sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell j}, p_{T}^{tot}$

Control Regions

- Used to normalise the predictions of some of the background processes.
- Defined for the main background processes:

WW ☞ high m_{II} region t-t/Wt events with b-tag jets

 $Z/\gamma_* \otimes m_{\parallel}$ within m_Z window

Misidentified leptons background is estimated using a data-driven technique.

Uncertainty

- Sources of systematic uncertainty:
 - **■** Experimental (8% ggF, 9% VBF)
- Theoretical (10% ggF, 19% VBF)
- Dominant experimental uncertainties:
- Misidentified leptons (6% ggF, 9% VBF)
- b-tagging efficiency (4% ggF, 6% VBF)
- Dominant theoretical uncertainties:
 - ggF: WW background (6%)
 - ▼ VBF: ggF background (13%)

Signal	ggF	VBF
Post-fit distributions	2000 0 1800 ATLAS H _{ggF} H _{VgF} H _{VgF} 1400 VS = 13 TeV, 36.1 fb ⁻¹ 1200 1000 800 600 400 200 100	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Results

		200 100 0 60 80 100 120 140 160 180 200 220 240 m _T [GeV]	0 [-1,0.26] [0.26,0.61] [0.61,0.86] [0.86,1.0] BDT score
	Signal Strength	$\begin{split} \mu_{\rm ggF} &= 1.10^{+0.10}_{-0.09}({\rm stat.})^{+0.13}_{-0.11}({\rm theo~syst.})^{+0.14}_{-0.13}({\rm exp~syst.}) \\ &= 1.10^{+0.21}_{-0.20} \end{split}$	$\mu_{\text{VBF}} = 0.62^{+0.29}_{-0.27}(\text{stat.})^{+0.12}_{-0.13}(\text{theo syst.}) \pm 0.15(\text{exp syst.})$ $= 0.62^{+0.36}_{-0.35}.$
	Cross section * branching ratio	$\begin{split} \sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*} \\ &= 11.4^{+1.2}_{-1.1} ({\rm stat.})^{+1.2}_{-1.1} ({\rm theo~syst.})^{+1.4}_{-1.3} ({\rm exp~syst.})~{\rm pb} \\ &= 11.4^{+2.2}_{-2.1}~{\rm pb} \end{split}$	$\sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*}$ = $0.50^{+0.24}_{-0.22} \text{(stat.)} \pm 0.10 \text{(theo syst.)}^{+0.12}_{-0.13} \text{(exp syst.)} \text{ pb}$ = $0.50^{+0.29}_{-0.28} \text{ pb.}$
	Observed (Expected) significance	$Z_0^{ggF} = 6.0(5.3)$	$Z_0^{VBF} = 1.8(2.6)$

139 fb⁻¹ couplings analysis **VBF**

- 139 fb⁻¹ data is analysed.
- Results derived with simultaneous maximum likelihood fit.
- Most notable improvements with respect to previous Run 2 analysis:
- Refinements in object selection together with an increased number of Monte Carlo (MC) simulated events.
- R new multi-variate discriminant using a Deep Neural Network (DNN)

Signal Region Event selection criterion to get signal dominated region Two isolated, different-flavour leptons ($\ell = e, \mu$) with opposite charge $p_{\rm T}^{\rm lead} > 22 \,{\rm GeV}$, $p_{\rm T}^{\rm sublead} > 15 \,{\rm GeV}$ Pre-selection $m_{\ell\ell} > 10 \,\text{GeV}, N_{\text{jet}} \geq 2$ $N_{b-\text{jet},(p_T>20 \text{ GeV})} = 0$ $|m_{\tau\tau} - m_Z| < 25 \text{ GeV}$ $m_{ij} > 120 \,\text{GeV}$ Selection central jet veto outside lepton veto A DNN is applied in the SR that uses 15 discriminant variables: $\Delta \phi_{\ell\ell}, m_{\ell\ell}, m_{\rm T}, \Delta y_{jj}, m_{jj}, p_{\rm T}^{\rm tot}, \sum_{\ell} C_{\ell}, m_{\ell 1j1}, m_{\ell 1j2}, m_{\ell 2j1}, m_{\ell 2j2},$ $p_{\rm T}^{\rm jet_1}, p_{\rm T}^{\rm jet_2}, p_{\rm T}^{\rm jet_3}$, and MET significance

CR yields normalise top-quark and Z+jets backgrounds in the SR Top-quark CR Two isolated, different-flavour leptons ($\ell=e,\mu$) with opposite charge $p_{\rm T}^{\rm lead}>22{\rm GeV}$, $p_{\rm T}^{\rm sublead}>15{\rm GeV}$ $m_{\ell\ell} > 10 \,\text{GeV}, \, N_{\text{iet}} \geq 2$ $N_{b-\text{jet},(p_T>20 \text{ GeV})} = 0$ $N_{b-\text{jet},(p_T>20 \text{ GeV})} = 1$ $|m_{\tau\tau} - m_Z| < 25 \text{ GeV}$ $|m_{\tau\tau} - m_Z| < 25 \text{ GeV}$

Uncertainty

- Sources of systematic uncertainty:
 - **■** Experimental (8.8%)
 - ► Theoretical (signal 14.4%, background 7.7%)
- Dominant experimental uncertainty:
 - missing transverse momentum measurement (4.7%)
- Dominant background theoretical uncertainty:
 - ggF background(5.2%)

	Results
Post-fit distributions	Uncertainty So = 13 TeV, 139 fb ⁻¹
Signal Strength	$\mu_{\text{VBF}} = 1.04^{+0.24}_{-0.20}$ $= 1.04^{+0.13}_{-0.12} \text{ (stat.)} ^{+0.09}_{-0.08} \text{ (exp syst.)} ^{+0.17}_{-0.12} \text{ (sig. theo.)} ^{+0.08}_{-0.07} \text{ (bkg. theo.)}$
Cross section * branching ratio	$\sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*} = 0.85^{+0.20}_{-0.17} \text{ pb}$ = $0.85 \pm 0.10 \text{ (stat.)} ^{+0.08}_{-0.07} \text{ (exp syst.)} ^{+0.13}_{-0.10} \text{ (sig. theo.)} ^{+0.07}_{-0.06} \text{ (bkg. theo.) pb}$
Observed (Expected) significance	$Z_0^{VBF} = 7.0(6.2)$ FIRST OBSERVATION

 $m_{\ell\ell} < 70 \,\text{GeV}$

central jet veto

outside lepton veto

Control Regions

• Two Control regions.

36.1 fb⁻¹

SFOS: same-flavour opposite-sign charge (lepton pair)

- 36.1 fb-1 data is analysed.
- In the WH, H→WW* production, the Higgs boson couples only to W bosons, at both the production and decay vertices.
- This measurement is the most precise measurement of this channel to date.

Signal Region Event selection criterion to get signal dominated region				
	WH		ZH	
Preselection	3 isolated leptons ($p_T > 15 \text{ GeV}$) total lepton charge ± 1		4 isolated leptototal lepton ch	ons (p _T > 10 GeV) arge 0
Category	Z-dominated	Z-depleted	2-SFOS	1-SFOS
Number of SFOS	2 or 1	0	2	1
Number of jets	≤ 1	_	≤ 1	≤ 2
Number of b-jets	0	0	0	0
$E_{\rm T}^{\rm miss}$ [GeV]	> 30	_	> 45	_
$p_{\mathrm{T}}^{\dot{4}\ell}$ [GeV]	_	_	> 45	_
$m_{\ell\ell}$ [GeV]	> 12 (min. SFOS)	_	> 10	> 10
$ m_{\ell\ell} - m_Z $ [GeV]	> 25 (SFOS)	_	$< 10 \ (m_{\ell_2 \ell_3})$	$< 10 \ (m_{\ell_2 \ell_3})$
$m_{\ell_0\ell_1}$ [GeV]	_	_	< 55	< 60
$\Delta \phi_{\ell_0 \ell_1}^{boost}$	_	_	< 2.3	< 1.9
$m_{\tau\tau}$ [GeV]	_	_	_	< 50
$\Delta\phi_{\ell_0\ell_1,\; ec p_{\mathrm{T}}^{\mathrm{miss}}}$ [rad]	_	-	_	> 0.4
$m_{4\ell}$ [GeV]	_	_	> 140	_
BDT	$BDT_{Zdom} > 0.3$	$BDT_{t\bar{t}} > 0.2 \& BDT_{WZ} > 0.15$	_	_

Control Regions

- CRs normalise the main background processes.
- processes for the WH channel
- ZZ∗ for the ZH channel in the 2-SFOS SR.
- In the 1-SFOS SR, ZZ*is estimated purely from simulation.

Uncertainty

- Sources of systematic uncertainty:
 - **■** Experimental (12% WH, 7% ZH)
- Theoretical (16% WH, 15% ZH)
- Dominant experimental uncertainties:
- **■** misidentification of leptons (8% WH, 3% ZH)
- Dominant theoretical uncertainty:
 - **■** WH: WZ/Wγ*background(12%)
 - **▼** ZH: ZH signal (14%)

Results				
Signal	WH	ZH		
Post-fit distributions	## Data Uncertainty WH (µ=2.3) Other Higgs WZ/W y Uncertainty WZ/W y WZ/W y Uncertainty WZ/W y WZ/W y UNCERTAINTY UNCERTAINTY WZ/W y UNCERTAINTY UNCERT	ATLAS Data Uncertainty ZH (μ=2.9) Mis-Id ZH → IllIvIv 1SFOS, 2SFOS VVV THE STORY THE STORY THE STORY THE STORY		
Signal Strength	$\mu_{WH} = 2.3^{+1.1}_{-0.9} (\text{stat.})^{+0.49}_{-0.36} (\text{exp syst.})^{+0.41}_{-0.33} (\text{theo syst.}) = 2.3^{+1.2}_{-1.0}$	$\mu_{ZH} = 2.9^{+1.7}_{-1.3} (\text{stat.})^{+0.54}_{-0.28} (\text{exp syst.})^{+0.66}_{-0.27} (\text{theo syst.}) = 2.9^{+1.9}_{-1.3}$		
Cross section * branching ratio	$\sigma_{WH} \cdot \mathcal{B}_{H \to WW^*}$ = 0.67 ^{+0.31} _{-0.27} (stat.) ^{+0.14} _{-0.11} (exp syst.) ^{+0.11} _{-0.09} (theo syst.) pb	$\sigma_{ZH} \cdot \mathcal{B}_{H \to WW^*}$ $= 0.54^{+0.31}_{-0.24} (\text{stat.})^{+0.10}_{-0.05} (\text{exp syst.})^{+0.11}_{-0.05} (\text{theo syst.}) \text{ pb}$		
Observed (Expected) significance	$Z_0^{WH} = 2.6 (1.3)$	$Z_0^{ZH} = 2.8(1.2)$		