

Observables used in the fit:

 $\ensuremath{\,^{\tiny \mbox{\tiny LSP}}}$ for ggF m_T $m_{\mathrm{T}} = \sqrt{\left(E_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}}\right)^{2} - \left|\mathbf{p}_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}$ ☞ for VBF BDT with input

variables m_{jj} , Δy_{jj} , $m_{\ell\ell}$, $\Delta \phi_{\ell\ell}$, $m_{\rm T}$, $\sum_{\ell} C_{\ell}$, $\sum_{\ell,j} m_{\ell j}$, $p_{\rm T}^{\rm tot}$

ΔΦ_{ii}: difference between the zimuthal angles of the two lepton

C_I = | 2η_I-Ση_I | /η_{II}), here η: pseudorapid

Used to normalise the predictions of some of the background processes

Defined for the main background processes:

WW ☞ high M_{II} region.

tT/Wt revents with b-tag jets.

Z/Y∗ ☞ M_{II} within m_Z window

Eveni selection chieria to ger signar dominarea region				
Category	$N_{\text{jet},(p_T>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet,(p_T>30 GeV)}} = 1 \text{ ggF}$	$N_{\text{jet},(p_T > 30 \text{ GeV})} \ge 2 \text{ VBF}$	
Preselection	Two isolated, different-flavour leptons $\ell=e,\mu$) with opposite charge $p_1^{\rm plad}>22$ GeV, $p_1^{\rm polhed}>15$ GeV $m>10$ GeV			
	p _T ^{miss} > 20 GeV			
Background rejection	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$ topology	$m_{\ell\ell} < 55 \text{ GeV}$ $\Delta \phi_{\ell\ell} < 1.8$		central jet veto outside lepton veto	
Discriminant variable BDT input variables	m_{T}		$\begin{array}{c} \text{BDT} \\ m_{jj}, \Delta y_{jj}, m_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\text{T}}, \sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell j}, p_{\text{T}}^{\text{tot}} \end{array}$	

- Sources of systematic uncertainty:
 - Experimental (8% ggF, 9% VBF)
 - Theoretical (10% ggF, 19% VBF)
- ninant experimental uncertainties:
- Misidentified leptons (6% ggF, 9% VBF)

- b-tagging efficiency (4% ggF, 6% VBF) Pile-up (5% ggF, 2% VBF)
- Dominant theoretical uncertainties:
- ggF: WW background (6%)
- VBF: ggF background (13%)

Results	https://doi.org/10.1016/j.physletb.2018.11.06			
Signal	ggF	VBF		
Post-fit distributions	00 100 170 140 140 160 160 20 20 20 240 0 0 0 100 120 140 160 160 20 20 20 240 0 0 0 100 120 140 160 160 20 20 20 240 0 0 0 100 120 140 160 160 20 20 20 240 0 0 0 0 0 0 0 0 0 0 0 0 0	2500 ATLAS 1		
Signal Strength	$\begin{split} \mu_{ggF} &= 1.10^{+0.10}_{-0.09}(\text{stat.})^{+0.13}_{-0.11}(\text{theo syst.})^{+0.14}_{-0.13}(\text{exp syst.}) \\ &= 1.10^{+0.21}_{-0.20} \end{split}$	$\mu_{\rm VBF} = 0.62^{+0.29}_{-0.27} ({\rm stat.})^{+0.12}_{-0.13} ({\rm theo~syst.}) \pm 0.15 ({\rm exp~sys})$ $= 0.62^{+0.36}_{-0.35}.$		
Cross section * branching ratio	$\begin{split} &\sigma_{ggF} \cdot B_{H-WW^*} \\ &= 11.4^{+1.2}_{-1.1}(\text{stat.})^{+1.2}_{-1.1}(\text{theo syst.})^{+1.4}_{-1.3}(\text{exp syst.}) \text{ pb} \\ &= 11.4^{+2.2}_{-2.1} \text{ pb} \end{split}$	$\begin{split} &\sigma_{VB} \cdot \mathcal{B}_{H-WW^*} \\ &= 0.50^{+0.24}_{-0.22} (stat.) \pm 0.10 (theo syst.) ^{+0.12}_{-0.13} (exp syst.) \ pb \\ &= 0.50^{+0.29}_{-0.28} \ pb. \end{split}$		
Observed (Expected) significance	$Z_0^{ggF} = 6.0(5.3)$	$Z_0^{VBF} = 1.8(2.6)$		

NEW RESULTS

VBF 139 fb-

- * Results derived with simultaneous
- * Most notable improvements with respect to previous Run2 analysis:
- refinements in object selection together with an increased number of Monte Carlo (MC) simulated events
- A new multi-variate

Event selection criterion to get signal dominated region wo isolated, different-flavour leptons $(\ell = e, \mu)$ with opposite charge $p_{\rm red}^{\rm red} > 22 \, {\rm GeV}$, $p_{\rm subball}^{\rm red} > 15 \, {\rm GeV}$ $m_{\ell \ell} > 10 \, {\rm GeV}$, $N_{\rm pl} \ge 2$ $N_{b > 5,(\mu_{\Gamma} > 20 \, {\rm GeV})} = 0$ $m_{\tau\tau} < 66.2 \,\text{GeV}$ $m_{jj} > 120 \,\text{GeV}$ central jet veto outside lepton veto A DNN is applied in the SR that uses 15 discrimin

discriminant using a Deep Neural Network (DNN). A DNN is applied in the SR that uses 15 discriminant variables: $\Delta\phi_{\ell\ell}, m_{\ell\ell}, m_{T_i}, \Delta y_{Ij}, m_{Ij}, p_{T_i}^{tot}, \sum_{\ell} \mathcal{C}_{\ell}, m_{\ell 1j1}, m_{\ell 1j2}, m_{\ell 2j1}, m_{\ell 2j2}, p_{T_i}^{tot_1}, p_{T_i}^{tot_2}, p_{T_i}^{tot_3}, \text{ and MET significance}$

_ _

- Two Control regions.
- CR yields normalise top-quark and Z+jets backgrounds in the SR.

 $Z \to \tau \tau$ CR Top-quark CR Two isolated, different-flavour leptons ($\ell = e, \mu$) with opposite charge $p_{\mathrm{T}}^{\mathrm{lead}} > 22 \mathrm{GeV}$, $p_{\mathrm{T}}^{\mathrm{sublead}} > 15 \mathrm{GeV}$ $m_{\ell\ell} > 10 \mathrm{GeV}$, $N_{\mathrm{jet}} \geq 2$ $N_{b\text{-jet,}(p_{\mathsf{T}}>20~\mathrm{GeV})}=0$ $N_{b-\text{jet},(p_T>20 \text{ GeV})} = 1$ $m_{\tau\tau} < 66.2 \, \text{GeV}$ $|m_{\tau\tau} - m_Z| < 25 \text{ GeV}$ $m_{\ell\ell} < 70 \,\mathrm{GeV}$ central jet veto outside lepton veto

- Sources of systematic uncertainty: Experimental (8.8%)
 - Theoretical (signal 14.4% background 7.7%)
- Dominant experimental uncertainty:
 - missing transverse momentum measurement (4.7%)
- Dominant background theoretical uncertainty:
 - ggF background (5.2%)

Signal	ggF	VBF
Post-fit distributions	0 100	5 2500 ATLAS
Signal Strength	$\begin{split} \mu_{ggF} &= 1.10^{+0.10}_{-0.09}(\text{stat.})^{+0.13}_{-0.11}(\text{theo syst.})^{+0.14}_{-0.13}(\text{exp syst.}) \\ &= 1.10^{+0.21}_{-0.20} \end{split}$	$\begin{split} \mu_{\text{VBF}} &= 0.62^{+0.29}_{-0.27}(\text{stat.})^{+0.12}_{-0.13}(\text{theo syst.}) \pm 0.15(\text{exp syst.}) \\ &= 0.62^{+0.36}_{-0.35}. \end{split}$
Cross section * branching ratio	$\begin{split} &\sigma_{ggF} \cdot \mathcal{B}_{H-WW^*} \\ &= 11.4^{+1.2}_{-1.1}(\text{stat.})^{+1.2}_{-1.1}(\text{theo syst.})^{+1.4}_{-1.3}(\text{exp syst.}) \text{ pb} \\ &= 11.4^{+2.2}_{-2.1} \text{ pb} \end{split}$	$\begin{split} &\sigma_{VW} \cdot B_{H \to WW^*} \\ &= 0.50^{+0.24}_{-0.22} (stat.) \pm 0.10 (theo syst.)^{+0.12}_{-0.13} (exp syst.) pb \\ &= 0.50^{+0.29}_{-0.28} pb. \end{split}$
Observed (Expected) significance	$Z_0^{ggF} = 6.0(5.3)$	$Z_0^{VBF} = 1.8(2.6)$

WH+ZH 36.1 fb-1

- * In the WH, H→WW* production, the Higgs boson couples only to W bosons, at both the production and decay vertices.
- * This measurement is the most precise measurement of this channel to date.

Event selection criterion to get signal dominated region > 15 GeV [GeV] [GeV] - m_Z| ₁ [GeV] > 12 (min. SFOS) > 25 (SFOS) $m_{\ell_0\ell_1}$ $\Delta \phi_{\ell_0\ell_1}^{\text{boost}}$ $m_{\tau\tau}$ [GeV] BDT_{Zdom} > 0.3 $BDT_{r\bar{r}} > 0.28BDT_{WZ} > 0.15$

- CRs normalise the main background
- WZ/Wγ* and top-quark processes for the WH channel
- ZZ* for the ZH channel in the 2-SFOS SR.
- In the 1-SFOS SR, ZZ*is estimated purely from simulation.

- Sources of systematic uncertainty:
 - Experimental (12% WH, 7% ZH) Theoretical (16% WH, 15% ZH)
- Dominant experimental uncertainties:
- Misidentified leptons (8% WH, 3% ZH)
- Dominant theoretical uncertainty WH: WZ/Wy*background (12%)
- ZH: ZH signal (14%)

Results ATLAS-CONF-2020-045 106 ATLAS Interna Post-fit CRs DNN output in SR $\mu_{VBF} = 1.04^{+0.24}_{-0.20}$ Signal Strength $1.04^{+0.13}_{-0.12}$ (stat.) $^{+0.09}_{-0.08}$ (exp syst.) $^{+0.17}_{-0.12}$ (sig. theo.) $^{+0.08}_{-0.07}$ (bkg. theo.) $\mathcal{P}_{VBF} \cdot \mathcal{B}_{H \to WW^+} = 0.85 \stackrel{+0.50}{\pm 0.01} \text{ pb}$ = $0.85 \pm 0.10 \text{ (stat.)} \stackrel{+0.08}{\pm 0.07} \text{ (exp syst.)} \stackrel{+0.13}{\pm 0.13} \text{ (sig. theo.)} \stackrel{+0.07}{\pm 0.07} \text{ (bkg. theo.) pb,}$ ratio Observed (Expected) FIRST OBSERVATION FOR VBF HWW

