Search for resonances decaying to photon pairs in 139 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector

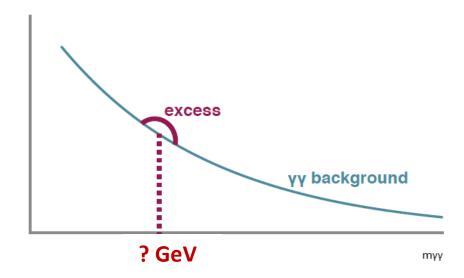
ATLAS-CONF-2020-037

Yufeng Wang^{1,2}

On behalf of the ATLAS Collaboration

¹University of Science and Technology of China

²Laboratoire de Physique Nucleaire et de Hautes Energies – Paris


Motivation & introduction

- Search for a diphoton resonance in the high-mass spectrum ($m_{\gamma\gamma}$ >160 GeV).
 - spin-0: search for a narrow or large width resonance, up to $\Gamma_X/m_X=10\%$.
 - spin-2: search for the RS graviton for $0.01 < k/M_{pl} < 0.1$.
- In the absence of a significant excess, set limits on fiducial/total cross-section.

Diphoton final state provides excellent invariant mass resolution and smoothly falling background.

Analysis strategy:

 fit data with analytical functions that model the background and signal shape.

Event selection harmonized for spin-0/spin-2:

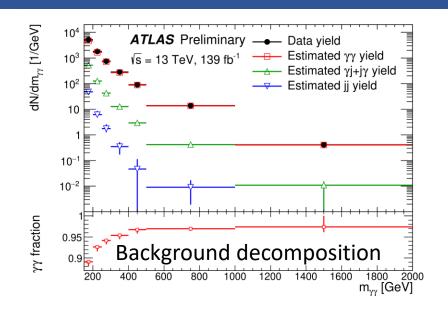
- Diphoton triggers
- Tight photon isolation and identification
- $m_{\gamma\gamma} > 150 \text{ GeV}$
- $E_T^{\gamma 1}/m_{\nu\nu} > 0.3$, $E_T^{\gamma 2}/m_{\nu\nu} > 0.25$

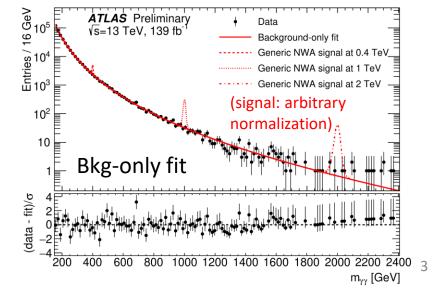
Fiducial selection:

Kinematic selections and truth isolation imitating the reconstruction-level selection.

Analysis overview

Signal:


- Narrow width approximation (NWA):
 - (Signal shape dominated by detector resolution)
 - Modeled by a double-sided Crystal Ball function (DSCB)
 - Parameters of DSCB functions expressed as function of m_X
- Large width (LW, $0.5\% \le \Gamma_X/m_X \le 10\%$):
 - DSCB ⊗ relativistic Breit-Wigner function for spin-0
 - DSCB ⊗ graviton lineshape for spin-2


Background:

Background template used to validate the analytical functions.

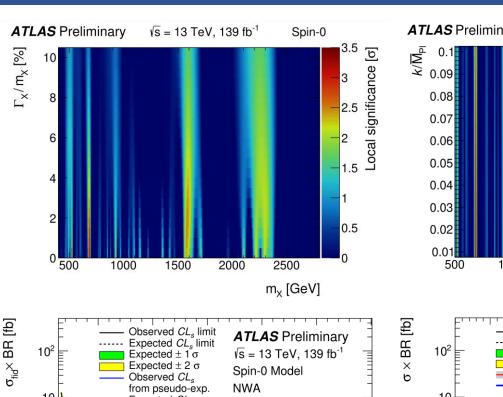
- Irreducible: real γγ events (shape from Sherpa NLO)
- **Reducible:** γ+jet, multi-jet (shape from data-driven control regions)

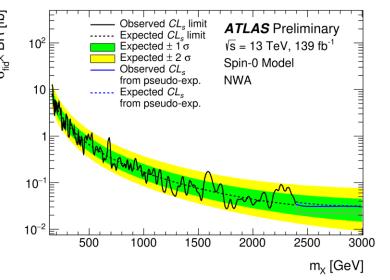
Total background template built by adding $\gamma\gamma$ and γ +jet according to their respective fraction (0.92/0.08) measured in data.

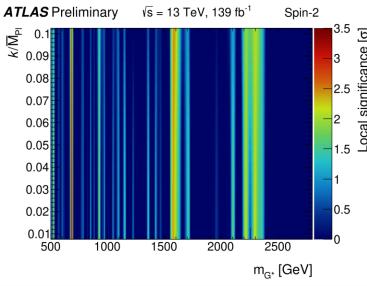
Results

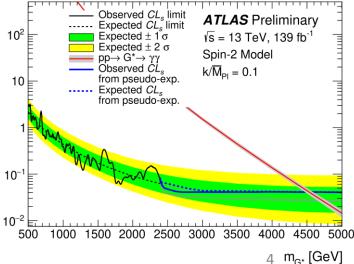
Highest $m_{\gamma\gamma}$ in data: 2.36 TeV.

No significant excess from the SM expectation observed.


Largest deviation at m_X = 684 GeV:


• 3.29σ local, 1.3σ global significance considering look-elsewhere effect.


(Above 2.4 TeV, pseudo-experiments used to obtain observed and expected limits as a cross-check.)


Limits on the spin-0 and spin-2 resonances:

- 12.5 fb (162 GeV) to 0.03 fb (3 TeV) for spin-0 narrow width signal.
- 3.2 fb (500 GeV) to 0.04 fb (~3 TeV) for k/M_{pl} = 0.1 graviton.

